Lecture 25

Dynamic Programming: LCS (contd.)

Source: Introduction to Algorithms, CLRS

Optimal Substructure in LCS

Optimal Substructure in LCS

Claim: Let X = x;x,...x_and Y = y,y,...y, be two sequences such thatx, =y, . Then,

Optimal Substructure in LCS

Claim: Let X = x;x,...x_and Y = y,y,...y, be two sequences such thatx, =y, . Then,
Z = LCS(x1xy...x,, 1,V V3---V,_1) + x,, will be an LCS of X and Y.

Optimal Substructure in LCS

Claim: Let X = x;x,...x_and Y = y,y,...y, be two sequences such thatx, =y, . Then,

Z = LCS(x1xy...x,, 1,V V3---V,_1) + x,, will be an LCS of X and Y.
_/v-\/

o\

LCS of x;x,...x,,_; and y,y,...y,_; followed by x

Optimal Substructure in LCS

Claim: Let X = x;x,...x_and Y = y,y,...y, be two sequences such thatx, =y, . Then,
Z = LCS(x1xy...x,, 1,V V3---V,_1) + x,, will be an LCS of X and Y.

Proof:

Optimal Substructure in LCS

Claim: Let X = x;x,...x_and Y = y,y,...y, be two sequences such thatx, =y, . Then,
Z = LCS(x1xy...x,, 1,V V3---V,_1) + x,, will be an LCS of X and Y.

Proof: Suppose length of Zis k

Optimal Substructure in LCS

Claim: Let X = x;x,...x_and Y = y,y,...y, be two sequences such thatx, =y, . Then,
Z = LCS(x1xy...x,, 1,V V3---V,_1) + x,, will be an LCS of X and Y.

Proof: Suppose length ot Z is k and, hence, length of LCS(x;x,...x, 1, V{V5...Y,_1) is k — 1.

Optimal Substructure in LCS

Claim: Let X = x;x,...x_and Y = y,y,...y, be two sequences such thatx, =y, . Then,
Z = LCS(x1xy...x,, 1,V V3---V,_1) + x,, will be an LCS of X and Y.

Proof: Suppose length ot Z is k and, hence, length of LCS(x;x,...x, 1, V{V5...Y,_1) is k — 1.
Suppose W = ww,...w;, notZ,isan LCS of X and ¥, and [> k.

Optimal Substructure in LCS

Claim: Let X = x;x,...x_and Y = y,y,...y, be two sequences such thatx, =y, . Then,
Z = LCS(x1xy...x,, 1,V V3---V,_1) + x,, will be an LCS of X and Y.

Proof: Suppose length ot Z is k and, hence, length of LCS(x;x,...x, 1, V{V5...Y,_1) is k — 1.
Suppose W = ww,...w;, notZ,isan LCS of X and ¥, and [> k.

Clearly, W ends with x, (ory,).

Optimal Substructure in LCS

Claim: Let X = x;x,...x_and Y = y,y,...y, be two sequences such thatx, =y, . Then,
Z = LCS(x1xy...x,, 1,V V3---V,_1) + x,, will be an LCS of X and Y.

Proof: Suppose length ot Z is k and, hence, length of LCS(x;x,...x, 1, V{V5...Y,_1) is k — 1.
Suppose W = ww,...w;, notZ,isan LCS of X and ¥, and [> k.
Clearly, W ends with x,, (ory,). (Why?)

Optimal Substructure in LCS

Claim: Let X = x;x,...x_and Y = y,y,...y, be two sequences such thatx, =y, . Then,
Z = LCS(x1xy...x,, 1,V V3---V,_1) + x,, will be an LCS of X and Y.

Proof: Suppose length ot Z is k and, hence, length of LCS(x;x,...x, 1, V{V5...Y,_1) is k — 1.
Suppose W = ww,...w;, notZ,isan LCS of X and ¥, and [> k.
Clearly, W ends with x,, (ory,). (Why?)

X = X[XX5...X,,_1X,,

Y =y1y93-- Yo 1Vn

W =wwows...w_w

Optimal Substructure in LCS

Claim: Let X = x;x,...x_and Y = y,y,...y, be two sequences such thatx, =y, . Then,
Z = LCS(x1xy...x,, 1,V V3---V,_1) + x,, will be an LCS of X and Y.

Proof: Suppose length ot Z is k and, hence, length of LCS(x;x,...x, 1, V{V5...Y,_1) is k — 1.
Suppose W = ww,...w;, notZ,isan LCS of X and ¥, and [> k.
Clearly, W ends with x,, (ory,). (Why?)

X — XIXZX3. . .xm_ 1%
Y =y1y93-- . y21 K

W =ww,w;.. .w,_lx

Optimal Substructure in LCS

Claim: Let X = x;x,...x_and Y = y,y,...y, be two sequences such thatx, =y, . Then,
Z = LCS(x1xy...x,, 1,V V3---V,_1) + x,, will be an LCS of X and Y.

Proof: Suppose length ot Z is k and, hence, length of LCS(x;x,...x, 1, V{V5...Y,_1) is k — 1.
Suppose W = ww,...w;, notZ,isan LCS of X and ¥, and [> k.
Clearly, W ends with x,, (ory,). (Why?)

X — XIXZX3. . .xm_ 1%
Y =yiyy3... Y21 X “—_ W1W2W3...w_| must be a common subsequence

of X1 X,x3...X,_1 @and y;y,y3...5,_
W = wiwyws...w;_1 ¥

Optimal Substructure in LCS

Claim: Let X = x;x,...x_and Y = y,y,...y, be two sequences such thatx, =y, . Then,
Z = LCS(x1xy...x,, 1,V V3---V,_1) + x,, will be an LCS of X and Y.

Proof: Suppose length ot Z is k and, hence, length of LCS(x;x,...x, 1, V{V5...Y,_1) is k — 1.
Suppose W = ww,...w;, notZ,isan LCS of X and ¥, and [> k.
Clearly, W ends with x,, (ory,). (Why?)

Optimal Substructure in LCS

Claim: Let X = x;x,...x_and Y = y,y,...y, be two sequences such thatx, =y, . Then,
Z = LCS(x1xy...x,, 1,V V3---V,_1) + x,, will be an LCS of X and Y.

Proof: Suppose length ot Z is k and, hence, length of LCS(x;x,...x, 1, V{V5...Y,_1) is k — 1.
Suppose W = ww,...w;, notZ,isan LCS of X and ¥, and [> k.
Clearly, W ends with x,, (ory,). (Why?)

Then wiw,...w,_; will be a CS of x(x,...x,,_{ and y;y,...y,_;.

Optimal Substructure in LCS

Claim: Let X = x;x,...x_and Y = y,y,...y, be two sequences such thatx, =y, . Then,
Z = LCS(x1xy...x,, 1,V V3---V,_1) + x,, will be an LCS of X and Y.

Proof: Suppose length ot Z is k and, hence, length of LCS(x;x,...x, 1, V{V5...Y,_1) is k — 1.
Suppose W = ww,...w;, notZ,isan LCS of X and ¥, and [> k.
Clearly, W ends with x,, (or vy,). (Why?)

Then wiw,...w,_; will be a CS of x(x,...x,,_{ and y;y,...y,_;.

This is a contradiction as LCS(xX,...X,, 1, V1 V,...Y,_1) is shorter than wyw,...w,_;.

Optimal Substructure in LCS

Claim: Let X = x;x,...x_and Y = y,y,...y, be two sequences such thatx, =y, . Then,
Z = LCS(x1xy...x,, 1,V V3---V,_1) + x,, will be an LCS of X and Y.

Proof: Suppose length ot Z is k and, hence, length of LCS(x;x,...x, 1, V{V5...Y,_1) is k — 1.
Suppose W = ww,...w;, notZ,isan LCS of X and ¥, and [> k.

Clearly, W ends with x,, (ory,). (Why?)
Then ww,...w,_; will be a CS of x;x,...x,,_; and y;y5...y,_;.

This is a contradiction as LCS(xX,...X,, 1, V1 V,...Y,_1) is shorter than wyw,...w,_;.

\

length k — 1

Optimal Substructure in LCS

Claim: Let X = x;x,...x_and Y = y,y,...y, be two sequences such thatx, =y, . Then,
Z = LCS(x1xy...x,, 1,V V3---V,_1) + x,, will be an LCS of X and Y.

Proof: Suppose length ot Z is k and, hence, length of LCS(x;x,...x, 1, V{V5...Y,_1) is k — 1.
Suppose W = ww,...w;, notZ,isan LCS of X and ¥, and [> k.

Clearly, W ends with x,, (ory,). (Why?)
Then ww,...w,_; will be a CS of x;x,...x,,_; and y;y5...y,_;.

This is a contradiction as LCS(xX,...X,, 1, V1 V,...Y,_1) is shorter than wyw,...w,_;.

\ f

length k — 1 length [— 1

Optimal Substructure in LCS

Claim: Let X = x;x,...x_and Y = y,y,...y, be two sequences such thatx, =y, . Then,
Z = LCS(x1xy...x,, 1,V V3---V,_1) + x,, will be an LCS of X and Y.

Proof: Suppose length ot Z is k and, hence, length of LCS(x;x,...x, 1, V{V5...Y,_1) is k — 1.
Suppose W = ww,...w;, notZ,isan LCS of X and ¥, and [> k.

Clearly, W ends with x,, (ory,). (Why?)
Then ww,...w,_; will be a CS of x;x,...x,,_; and y;y5...y,_;.

This is a contradiction as LCS(xX,...X,, 1, V1 V,...Y,_1) is shorter than wyw,...w,_;.

\ f

length k — 1 length [— 1

Optimal Substructure in LCS

Optimal Substructure in LCS

Claim: Let X = x;x,...x,_and Y = y,y,...y, be sequences such that x, # y . Then, at least

Optimal Substructure in LCS

Claim: Let X = x;x,...x,_and Y = y,y,...y, be sequences such that x, # y . Then, at least

one out of LCS(xx,...X, 1, V{V5...V,) and LCS(x;x,...x, .,V V,...y, 1) will be an LCS(X, Y).

Optimal Substructure in LCS

Claim: Let X = x;x,...x,_and Y = y,y,...y, be sequences such that x, # y . Then, at least

one out of LCS(xx,...X, 1, V{V5...V,) and LCS(x;x,...x, .,V V,...y, 1) will be an LCS(X, Y).

Proof:

Optimal Substructure in LCS

Claim: Let X = x;x,...x,_and Y = y,y,...y, be sequences such that x, # y . Then, at least
one out of LCS(xx,...X, 1, V{V5...V,) and LCS(x;x,...x, .,V V,...y, 1) will be an LCS(X, Y).

Proof: Suppose neither LCS(X1X2 X_1-Y1Vo-- yn) Nor LCS(XIXZ Xy V1 Voo yn—l) IS an LCS(X, Y)

Optimal Substructure in LCS

Claim: Let X = x;x,...x,_and Y = y,y,...y, be sequences such that x, # y . Then, at least
one out of LCS(xx,...X, 1, V{V5...V,) and LCS(x;x,...x, .,V V,...y, 1) will be an LCS(X, Y).

Proof: Suppose neither LCS(X1X2 X_1-Y1Vo-- yn) Nor LCS(XIXZ Xy V1 Voo yn—l) IS an LCS(X, Y)

Let LCS(xX,...X,,_1, V1)»...Y,) e of length J.

Optimal Substructure in LCS

Claim: Let X = x;x,...x,_and Y = y,y,...y, be sequences such that x, # y . Then, at least
one out of LCS(xx,...X, 1, V{V5...V,) and LCS(x;x,...x, .,V V,...y, 1) will be an LCS(X, Y).

Proof: Suppose neither LCS(X1X2 X_1-Y1Vo-- yn) NOr LCS(XIXZ Xy V1 Voo yn—l) IS an LCS(X, Y)
Let LCS(xX,...X,,_1, V1)»...Y,) e of length J.

Let LCS(xX,...X,, V{V5...V,_1) be of length k.

Optimal Substructure in LCS

Claim: Let X = x;x,...x,_and Y = y,y,...y, be sequences such that x, # y . Then, at least
one out of LCS(xx,...X, 1, V{V5...V,) and LCS(x;x,...x, .,V V,...y, 1) will be an LCS(X, Y).

Proof: Suppose neither LCS(xX,...X,,_{, V{V5-..y,) hor LCS(x;X,...X ., V{V,...Y,_1) is an LCS(X, Y).
Let LCS(xX,...X,,_1, V1)»...Y,) e of length J.
Let LCS(xX,...X,, V{V5...V,_1) be of length k.
Let W be an LCS(X, Y) of length [> Max(J, k).

Optimal Substructure in LCS

Claim: Let X = x;x,...x,_and Y = y,y,...y, be sequences such that x, # y . Then, at least
one out of LCS(xx,...X, 1, V{V5...V,) and LCS(x;x,...x, .,V V,...y, 1) will be an LCS(X, Y).

Proof: Suppose neither LCS(X1X2 X_1-Y1Vo-- yn) Nor LCS(XIXZ Xy V1 Voo yn—l) IS an LCS(X, Y)

Let LCS(xX,...X,,_1, V1)»...Y,) e of length J.
Let LCS(xX,...X,, V{V5...V,_1) be of length k.
Let W be an LCS(X, Y) of length [> Max(J, k).

Since x,, # v, W cannot end with both x,, and y, .

Optimal Substructure in LCS

Claim: Let X = x;x,...x,_and Y = y,y,...y, be sequences such that x, # y . Then, at least
one out of LCS(xx,...X, 1, V{V5...V,) and LCS(x;x,...x, .,V V,...y, 1) will be an LCS(X, Y).

Proof: Suppose neither LCS(X1X2 X_1-Y1Vo-- yn) Nor LCS(XIXZ Xy V1 Voo yn—l) IS an LCS(X, Y)

Let LCS(xX,...X,,_1, V1)»...Y,) e of length J.

X = X XoX3...X,,_1X,,

Let LCS(xX,...X,, V{V5...V,_1) be of length k.

¥'=y1y23--Yn-1Yn
Let W be an LCS(X, Y) of length [> Max(J, k).

W — W1W2W3...Wl_1wl
Since x,, # v, W cannot end with both x,, and y, .

Optimal Substructure in LCS

Claim: Let X = x;x,...x,_and Y = y,y,...y, be sequences such that x, # y . Then, at least
one out of LCS(xx,...X, 1, V{V5...V,) and LCS(x;x,...x, .,V V,...y, 1) will be an LCS(X, Y).

Proof: Suppose neither LCS(X1X2 X_1-Y1Vo-- yn) Nor LCS(XIXZ Xy V1 Voo yn—l) IS an LCS(X, Y)

Let LCS(xX,...X,,_1, V1)»...Y,) e of length J.
X — X1X2XB. . 'Xm—lx

Y =y1y93- Yo 1Vn

Let LCS(xX,...X,, V{V5...V,_1) be of length k.
Let W be an LCS(X, Y) of length [> Max(J, k).

W — W1W2W3...Wl_1wl
Since x,, # v, W cannot end with both x,, and y, .

Optimal Substructure in LCS

Claim: Let X = x;x,...x,_and Y = y,y,...y, be sequences such that x, # y . Then, at least
one out of LCS(xx,...X, 1, V{V5...V,) and LCS(x;x,...x, .,V V,...y, 1) will be an LCS(X, Y).

Proof: Suppose neither LCS(X1X2 X_1-Y1Vo-- yn) Nor LCS(XIXZ e Xps Y1 Voo yn—l) IS an LCS(X, Y)

Let LCS(xX,...X,,_1, V1)»...Y,) e of length J.
X — X1X2XB. . 'Xm—lx

Y =y1y93- Yo 1Vn

Let LCS(xX,...X,, V{V5...V,_1) be of length k.
Let W be an LCS(X, Y) of length [> Max(J, k).

W — W1W2W3. . .Wl_lwl

Since x,, # v,, W cannot end with both x and y, . /

it W doesn't end with x,, (WLOG), then W will be an CS of xx,...x, _;and y,y,...y,.

Optimal Substructure in LCS

Claim: Let X = x;x,...x,_and Y = y,y,...y, be sequences such that x, # y . Then, at least
one out of LCS(xx,...X, 1, V{V5...V,) and LCS(x;x,...x, .,V V,...y, 1) will be an LCS(X, Y).

Proof: Suppose neither LCS(X1X2 X_1-Y1Vo-- yn) Nor LCS(XIXZ Xy V1 Voo yn—l) IS an LCS(X, Y)

Let LCS(xX,...X,,_1, V1)»...Y,) e of length J.
X — X1X2XB. . 'Xm—lx

Y =y1y93- Yo 1Vn

Let LCS(xX,...X,, V{V5...V,_1) be of length k.

Let W be an LCS(X, Y) of length [> Max(J, k).
W — W1W2W3.. .Wl_lwl

Since x,, # v,, W cannot end with both x,, and y, . /

it W doesn't end with x,, (WLOG), then W will be an CS of xx,...x, _;and y,y,...y,.

This is a contradiction as W is longer than LCS(x{Xx,...X,,_1, V{V>.-.V,).

Optimal Substructure in LCS

Claim: Let X = x;x,...x,_and Y = y,y,...y, be sequences such that x, # y . Then, at least
one out of LCS(xx,...X, 1, V{V5...V,) and LCS(x;x,...x, .,V V,...y, 1) will be an LCS(X, Y).

Proof: Suppose neither LCS(X1X2 X_1-Y1Vo-- yn) Nor LCS(XIXZ Xy V1 Voo yn—l) IS an LCS(X, Y)

Let LCS(xX,...X,,_1, V1)»...Y,) e of length J.
X — X1X2XB. . 'Xm—lx

Y =y1y93- Yo 1Vn

Let LCS(xX,...X,, V{V5...V,_1) be of length k.
Let W be an LCS(X, Y) of length [> Max(J, k).

W — W1W2W3. . .Wl_lwl

Since x,, # v,, W cannot end with both x,, and y, . /
it W doesn't end with x,, (WLOG), then W will be an CS of xx,...x, _;and y,y,...y,.

This is a contradiction as W is longer than LCS(x{Xx,...X,,_1, V{V>.-.V,).

/

length [

Optimal Substructure in LCS

Claim: Let X = x;x,...x,_and Y = y,y,...y, be sequences such that x, # y . Then, at least
one out of LCS(xx,...X, 1, V{V5...V,) and LCS(x;x,...x, .,V V,...y, 1) will be an LCS(X, Y).

Proof: Suppose neither LCS(X1X2 X_1-Y1Vo-- yn) Nor LCS(XIXZ Xy V1 Voo yn—l) IS an LCS(X, Y)

Let LCS(xX,...X,,_1, V1)»...Y,) e of length J.
X — X1X2XB. . 'Xm—lx

Y =y1y93- Yo 1Vn

Let LCS(xX,...X,, V{V5...V,_1) be of length k.
Let W be an LCS(X, Y) of length [> Max(J, k).

W — W1W2W3. . .Wl_lwl

Since x,, # v,, W cannot end with both x,, and y, . /
it W doesn't end with x,, (WLOG), then W will be an CS of xx,...x, _;and y,y,...y,.

This is a contradiction as W is longer than LCS(x{Xx,...X,,_1, V{V>.-.V,).

/ \

length [length j

Optimal Substructure in LCS

Claim: Let X = x;x,...x,_and Y = y,y,...y, be sequences such that x, # y . Then, at least
one out of LCS(xx,...X, 1, V{V5...V,) and LCS(x;x,...x, .,V V,...y, 1) will be an LCS(X, Y).

Proof: Suppose neither LCS(X1X2 X_1-Y1Vo-- yn) Nor LCS(XIXZ Xy V1 Voo yn—l) IS an LCS(X, Y)

Let LCS(xX,...X,,_1, V1)»...Y,) e of length J.
X — X1X2XB. . 'Xm—lx

Y =y1y93- Yo 1Vn

Let LCS(xX,...X,, V{V5...V,_1) be of length k.
Let W be an LCS(X, Y) of length [> Max(J, k).

W — W1W2W3. . .Wl_lwl

Since x,, # v,, W cannot end with both x,, and y, . /
it W doesn't end with x,, (WLOG), then W will be an CS of xx,...x, _;and y,y,...y,.

This is a contradiction as W is longer than LCS(x{Xx,...X,,_1, V{V>.-.V,).

/ \

length [length j

Recurrence for LCS

Recurrence for LCS

Let X = x\x,...x, and ¥ = y,y,...y, be two sequences.

Recurrence for LCS

Let X = x\x,...x, and ¥ = y,y,...y, be two sequences.

Let LCS(7, /) = length of the LCS of xyx,...x; and y,y,...y;.

Recurrence for LCS

Let X = x\x,...x, and ¥ = y,y,...y, be two sequences.

Let LCS(7,7) = length of the LCS of x}x,...x; and y,y,...y;. Then,

Recurrence for LCS

Let X = x\x,...x, and ¥ = y,y,...y, be two sequences.

Let LCS(7,7) = length of the LCS of x}x,...x; and y,y,...y;. Then,

LCS(i,j) =

Recurrence for LCS

Let X = x\x,...x, and ¥ = y,y,...y, be two sequences.

Let LCS(7,7) = length of the LCS of x}x,...x; and y,y,...y;. Then,

LCS(i,j) =

Recurrence for LCS

Let X = x\x,...x, and ¥ = y,y,...y, be two sequences.

Let LCS(7,7) = length of the LCS of x}x,...x; and y,y,...y;. Then,

0, fti=0o0rj=0
LCS(,j) =

Recurrence for LCS

Let X = x\x,...x, and ¥ = y,y,...y, be two sequences.

Let LCS(7,7) = length of the LCS of x}x,...x; and y,y,...y;. Then,

0, fti=0o0rj=0
LCS(i,j) = { LCS(i—1,j—-D+1, ifx=y,

Recurrence for LCS

Let X = x\x,...x, and ¥ = y,y,...y, be two sequences.

Let LCS(7,7) = length of the LCS of x}x,...x; and y,y,...y;. Then,

0, fti=0o0rj=0
LCS(i,j) = { LCS(i—1,j—-D+1, ifx=y,

max(LCS(i — 1,7), LCS(i,j — 1)), itx; #y;

Overlapping Subproblems in LCS

0, fi=0o0rj=0
LCSG,j) = { LCSG—1,j—-D+1, ifx;=y,
max(LCS(i — 1,7), LCS(i,j — 1)), itx; #y;

Overlapping Subproblems in LCS

0, fi=0o0rj=0
LCSG,j) = { LCSG—1,j—-D+1, ifx;=y,

max(LCS(i — 1,7), LCS(i,j — 1)), itx; #y;
LCS(5,8)

Overlapping Subproblems in LCS

0, fi=0o0rj=0
LCSG,j) = { LCSG—1j—1)+1, ifx =y,

max(LCS(i — 1,), LCS(i,j — 1)), itx; #y;
LCS(5,8)

N\

LCS(4,8) LCS(5,7)

Overlapping Subproblems in LCS

0, fi=0o0rj=0
LCSG,j) = { LCSG—1j—1)+1, ifx =y,

max(LCS(i — 1,), LCS(i,j — 1)), itx; #y;
LCS(5,8)

N\

LCS(4,8) LCS(5,7)

/\

L.CS(3,8) LCS(4,7)

Overlapping Subproblems in LCS

0, fi=0o0rj=0
LCSG,j) = { LCSG—1j—1)+1, ifx =y,

max(LCS(i — 1,), LCS(i,j — 1)), itx; #y;
LCS(5,8)

N\

LCS(4.8) LCS(5.7)

VATV

LCS(3,3) LCS(4,7) LCS(4,7) LCS(5,6)

Overlapping Subproblems in LCS

0, ifi=0o0rj=0
LCSG,j) = { LCSG—1,j—1D+1, ifx;=y,
max(LCS(i — 1,7), LCS(i,j — 1)), itx; #y;

LCS(5,8)

N\

LCS(4.8) LCS(5.7)

VAT

LCS(3,3) LCS(4,7) LCS(4,7) LCS(5,6)

\

Overlapping subproblems

Top-Down DP for LCS

Top-Down DP for LCS

dplO:n]l0O:m] ={-1,—-1,...,— 1}

Top-Down DP for LCS

dpli][j] stores LCS(i, j)

v

dplO:n]l0O:m] ={-1,—-1,...,— 1}

Top-Down DP for LCS

dpli][j] stores LCS(i, j)

v

dplO:n]l0O:m] ={-1,—-1,...,— 1}
dp|O][0 : m] = 0, dp[0 : n][0] =0

Top-Down DP for LCS

dpli][j] stores LCS(i, j)

v

dplO:n]l0O:m] ={-1,—-1,...,— 1}
dp|O][0 : m] = 0, dp[0 : n][0] =0

O | o |l O] O] O] O

Top-Down DP for LCS

dpli][j] stores LCS(i, j)

v

dplO:n]l0O:m] ={-1,—-1,...,— 1}
dp|O][0 : m] = 0, dp[0 : n][0] =0

Top-Down DP for LCS

dpli][j] stores LCS(i, j)

v

dplO:n]l0O:m] ={-1,—-1,...,— 1}
dp|O][0 : m] = 0, dp[0 : n][0] =0
LCS(i,)):

Top-Down DP for LCS

dpli][j] stores LCS(i, j)

v

dplO:n]l0O:m] ={-1,—-1,...,— 1}
dp|O][0 : m] = 0, dp[0 : n][0] =0
LCS(i, J): <———— Call with LCS(| X |, | V|)

Top-Down DP for LCS

dpli][j] stores LCS(i, j)

v

dplO:n]l0O:m] ={-1,—-1,...,— 1}
dp|O][0 : m] = 0, dp[0 : n][0] =0
LCS(i,)):

Top-Down DP for LCS

dpli][j] stores LCS(i, j)

v

dplO:n]l0O:m] ={-1,—-1,...,— 1}
dp|O][0 : m] = 0, dp[0 : n][0] =0
LCS(i,)):

1. if (dplillj] # — 1)

Top-Down DP for LCS

dpli][j] stores LCS(i, j)

v

dplO:n]l0O:m] ={-1,—-1,...,— 1}
dp|O][0 : m] = 0, dp[0 : n][0] =0
LCS(i,)):

1. if (dplill[j] # — 1)

2. return dp|i]|j]

Top-Down DP for LCS

dpli][j] stores LCS(i, j)

v

dplO:n]l0O:m] ={-1,—-1,...,— 1}
dp|O][0 : m] = 0, dp[0 : n][0] =0
LCS(i,)):

1. if (dplill[j] # — 1)

2. return dp|i]|j]

3. iftx;==Yy;

Top-Down DP for LCS

dpli][j] stores LCS(i, j)

v

dplO:n]l0O:m] ={-1,—-1,...,— 1}
dp|O][0 : m] = 0, dp[0 : n][0] =0
LCS(i,)):

1. if (dplillj] # — 1)

2 return dp|i]|j]
3. iftx;==Yy;
4 dpli][j]]=LCSG—1,j—1)+ 1

Top-Down DP for LCS

dpli][j] stores LCS(i, j)

v

dplO:n]l0O:m] ={-1,—-1,...,— 1}
dp|O][0 : m] = 0, dp[0 : n][0] =0

LCS(i,)):

1. (dplillj] # — 1)

2. return dp|i]|j]

3. iftx;==Yy;

4. dpli][j]]=LCSG—1,j—1)+ 1
5. else

Top-Down DP for LCS

dpli][j] stores LCS(i, j)

v

dplO:n]l0O:m] ={-1,—-1,...,— 1}
dp|O][0 : m] = 0, dp[0 : n][0] =0

LCS(i,)):

1. (dplillj] # — 1)

2. return dp|i]|j]

3. iftx;==Yy;

4. dpli][j]]=LCSG—1,j—1)+ 1

5. else

6. dpli]lj] = Max(LCS(i — 1,j),LCS(i,j — 1))

Top-Down DP for LCS

dpli][j] stores LCS(i, j)

v

dplO:n]l0O:m] ={-1,—-1,...,— 1}
dp|O][0 : m] = 0, dp[0 : n][0] =0
LCS(i,)):

1. if (dplillj] # — 1)

2 return dp|i]|j]

3. iftx;==Yy;

4. dpli][j]]=LCSG—1,j—1)+ 1

5. else

6 dpli]lj] = Max(LCS(i — 1,j),LCS(i,j — 1))
7. return dpli]|/]

Top-Down DP for LCS

dpli][j] stores LCS(i, j)

v

dplO:n]l0O:m] ={-1,—-1,...,— 1}
dp|O][0 : m] = 0, dp[0 : n][0] =0
LCS(i,)):

1. if dplillj] # — 1)

2 return dp|i]|j]

3. iftx;==Yy;

4. dpli][j]]=LCSG—1,j—1)+ 1

5. else

6 dpli][j] = Max(LCS(i — 1,7),LCS(i,j — 1)) Time Complexity: O(nm)
7. return dpli]|/]

Top-Down DP for LCS

dpli][j] stores LCS(i, j)

v

dplO:n]l0O:m] ={-1,—-1,...,— 1}
dp|O][0 : m] = 0, dp[0 : n][0] =0
LCS(i,)):

1. if dplillj] # — 1)

2 return dp|i]|j]

3. iftx;==Yy;

4. dpli][j]]=LCSG—1,j—1)+ 1

5. else

6 dpli][j] = Max(LCS(i — 1,7),LCS(i,j — 1)) Time Complexity: O(nm)
7. return dpli]|/] \

Why?

Bottom-Up DP for LCS

Bottom-Up DP for LCS

LCS(X,Y)

Bottom-Up DP for LCS

LCS(X, Y)
1. dplO:n]JlO:m] ={-1,—-1,...,—1}

Bottom-Up DP for LCS

LCS(X, Y)
1. dplO:n]JlO:m] ={-1,—-1,...,—1}
2. dplO]|0:m] =0, dplO:n][0] =0

Bottom-Up DP for LCS

LCS(X, Y)
1. dplO:n]JlO:m] ={-1,—-1,...,—1}
2. dplO]|0:m] =0, dplO:n][0] =0

O | O |l O] O] O] O

I | I I I
1 1 1 1 1 o

| ! | | !
— — — — — o

I I I I I
1 1 1 — 1 ()

! ! ! ! !
— — — — — o

I I I I I
1 1 1 1 1 o

Bottom-Up DP for LCS

LCS(X, Y)
1. dplO:n]JlO:m] ={-1,—-1,...,—1}
2. dplO]|0:m] =0, dplO:n][0] =0

3. fori=1ton

O | O |l O] O] O] O

I | I I I
1 1 1 1 1 o

| ! | | !
— — — — — o

I I I I I
1 1 1 — 1 ()

! ! ! ! !
— — — — — o

I I I I I
1 1 1 1 1 o

Bottom-Up DP for LCS

LCS(X, Y)

1. dplO:n]JlO:m] ={-1,—-1,...,—1}
2. dplO]|0:m] =0, dplO:n][0] =0

3. fori=1ton

4 forj=1tom

O | O |l O] O] O] O

Bottom-Up DP for LCS

LCS(X,Y)

1.

Sl

dplO:n]lO:m] ={-1,—-1,...,— 1}
dp|O]|0 : m] =0, dp|O : n][0] =0
fori=1ton

forj=1tom

O | O |l O] O] O] O

Bottom-Up DP for LCS

LCS(X, Y)
dplO:n]lO:m] ={-1,—-1,...,— 1}
dp|O]|0 : m] =0, dp|O : n][0] =0
fori=1ton

forj=1tom

dplilljl =dpli = 1][j - 1]+ 1

SHE U e

O | O |l O] O] O] O

Bottom-Up DP for LCS

LCS(X, Y)
dplO:n]lO:m] ={-1,—-1,...,— 1}
dp|O]|0 : m] =0, dp|O : n][0] =0
fori=1ton
forj=1tom
if x. ==y,

dplilljl =dpli —1][j — 1]+ 1
else

A - R e

O | O |l O] O] O] O

Bottom-Up DP for LCS

LCS(X, Y)

1. dplO:n]JlO:m] ={-1,—-1,...,—1}

2. dplO]|0:m] =0, dplO:n][0] =0

3. fori=1ton

4 forj=1tom

5. if x; ==y,

6 dpli]ljl =dpli - 1][j - 1]+ 1

7 else

3 dpli][j] = Max(apli — 1]1[j], dpli][j — 11)

O | O |l O] O] O] O

I | I I I
1 1 1 1 1 o

| ! | | !
— — — — — o

I I I I I
1 1 1 — 1 ()

! ! ! ! !
— — — — — o

I I I I I
1 1 1 1 1 o

Bottom-Up DP for LCS

LCS(X, Y)

1. dplO:n]JlO:m] ={-1,—-1,...,—1}

2. dplO]|0:m] =0, dplO:n][0] =0

3. fori=1ton

4. forj=1tom

5. if x; ==y,

6. dpli]ljl =dpli - 1][j - 1]+ 1

7. else

8. dpli][j] = Max(apli — 1]1[j], dpli][j — 11)
9. return dp|n][m]

O | O |l O] O] O] O

I | I I I
1 1 1 1 1 o

| ! | | !
— — — — — o

I I I I I
1 1 1 — 1 ()

! ! ! ! !
— — — — — o

I I I I I
1 1 1 1 1 o

Bottom-Up DP for LCS

LCS(X, Y)

1. dplO:n]JlO:m] ={-1,—-1,...,—1}

2. dplO]|0:m] =0, dplO:n][0] =0

3. fori=1ton

4. forj=1tom

5. if x; ==y,

6. dpli]ljl =dpli - 1][j - 1]+ 1

7. else

8. dpli][j] = Max(apli — 1]1[j], dpli][j — 11)
9. return dp|n][m]

O | O |l O] O] O] O

Bottom-Up DP for LCS

LCS(X, Y)

1. dplO:n]JlO:m] ={-1,—-1,...,—1}

2. dplO]|0:m] =0, dplO:n][0] =0

3. fori=1ton

4. forj=1tom

5. if x; ==y,

6. dpli]ljl =dpli - 1][j - 1]+ 1

7. else

8. dpli][j] = Max(apli — 1]1[j], dpli][j — 11)
9. return dp|n][m]

O | O |l O] O] O] O

Bottom-Up DP for LCS

LCS(X, Y)

1. dplO:n]JlO:m] ={-1,—-1,...,—1}

2. dplO]|0:m] =0, dplO:n][0] =0

3. fori=1ton

4. forj=1tom

5. if x; ==y,

6. dpli]ljl =dpli - 1][j - 1]+ 1

7. else

8. dpli][j] = Max(apli — 1]1[j], dpli][j — 11)
9. return dp|n][m]

O | O |l O] O] O] O

Bottom-Up DP for LCS

LCS(X, Y)

1. dplO:n]JlO:m] ={-1,—-1,...,—1}

2. dplO]|0:m] =0, dplO:n][0] =0

3. fori=1ton

4. forj=1tom

5. if x; ==y,

6. dpli]ljl =dpli - 1][j - 1]+ 1

7. else

8. dpli][j] = Max(apli — 1]1[j], dpli][j — 11)
9. return dp|n][m]

O | O |l O] O] O] O

Bottom-Up DP for LCS

LCS(X, Y)

1. dplO:n]JlO:m] ={-1,—-1,...,—1}

2. dplO]|0:m] =0, dplO:n][0] =0

3. fori=1ton

4. forj=1tom

5. if x; ==y,

6. dpli]ljl =dpli - 1][j - 1]+ 1

7. else

8. dpli][j] = Max(apli — 1]1[j], dpli][j — 11)
9. return dp|n][m]

O | O |l O] O] O] O

Bottom-Up DP for LCS

LCS(X, Y)

1. dplO:n]JlO:m] ={-1,—-1,...,—1}

2. dplO]|0:m] =0, dplO:n][0] =0

3. fori=1ton

4. forj=1tom

5. if x; ==y,

6. dpli]ljl =dpli - 1][j - 1]+ 1

7. else

8. dpli][j] = Max(apli — 1]1[j], dpli][j — 11)
9. return dp|n][m]

O | O | O] O] O] O

Bottom-Up DP for LCS

LCS(X, Y)

1. dplO:n]JlO:m] ={-1,—-1,...,—1}

2. dplO]|0:m] =0, dplO:n][0] =0

3. fori=1ton

4. forj=1tom

5. if x; ==y,

6. dpli]ljl =dpli - 1][j - 1]+ 1

7. else

8. dpli][j] = Max(apli — 1]1[j], dpli][j — 11)
9. return dp|n][m]

O | O |l O] O] O] O

Bottom-Up DP for LCS

LCS(X, Y)

1. dplO:n]JlO:m] ={-1,—-1,...,—1}

2. dplO]|0:m] =0, dplO:n][0] =0

3. fori=1ton

4. forj=1tom

5. if x; ==y,

6. dpli]ljl =dpli - 1][j - 1]+ 1

7. else

8. dpli][j] = Max(apli — 1]1[j], dpli][j — 11)
9. return dp|n][m]

O | O |l O] O] O] O

Bottom-Up DP for LCS

LCS(X, Y)

1. dplO:n]JlO:m] ={-1,—-1,...,—1}

2. dplO]|0:m] =0, dplO:n][0] =0

3. fori=1ton

4. forj=1tom

5. if x; ==y,

6. dpli]ljl =dpli - 1][j - 1]+ 1

7. else

8. dpli][j] = Max(apli — 1]1[j], dpli][j — 11)
9. return dp|n][m]

O | O |l O] O] O] O

Bottom-Up DP for LCS

LCS(X, Y)

1. dplO:n]JlO:m] ={-1,—-1,...,—1}

2. dplO]|0:m] =0, dplO:n][0] =0

3. fori=1ton

4. forj=1tom

5. if x; ==y,

6. dpli]ljl =dpli - 1][j - 1]+ 1

7. else

8. dpli][j] = Max(apli — 1]1[j], dpli][j — 11)
9. return dp|n][m]

O | O |l O] O] O] O

Bottom-Up DP for LCS

LCS(X, Y)

1. dplO:n]JlO:m] ={-1,—-1,...,—1}

2. dplO]|0:m] =0, dplO:n][0] =0

3. fori=1ton

4. forj=1tom

5. if x; ==y,

6. dpli]ljl =dpli - 1][j - 1]+ 1

7. else

8. dpli][j] = Max(apli — 1]1[j], dpli][j — 11)
9. return dp|n][m]

O | O | O] O] O] O

Bottom-Up DP for LCS

LCS(X, Y)

1. dplO:n]JlO:m] ={-1,—-1,...,—1}

2. dplO]|0:m] =0, dplO:n][0] =0

3. fori=1ton

4. forj=1tom

5. if x; ==y,

6. dpli]ljl =dpli - 1][j - 1]+ 1

7. else

8. dpli][j] = Max(apli — 1]1[j], dpli][j — 11)
9. return dp|n][m]

O | o | OoO0O]|] O] O] O

Bottom-Up DP for LCS

LCS(X, Y)
1. dplO:n]JlO:m] ={-1,—-1,...,—1} dp
2. dplO]|0:m] =0, dplO:n][0] =0
3. fori=1ton OO0 (O [O0Of[O0[O
4. forj =1 tom 0
N . . 0 (Z,])
6. dplilljl =dpli—1]Ij - 1]+ 1
0
7. else
8. dplil[j] = Max(dpli — 11[j1, dplillj — 11) X
9. return dp[n][m] m

Bottom-Up DP for LCS

LCS(X,Y)

(i_ 19])
1. dplO:n]JlO:m] ={-1,—-1,...,—1} dp
2. dplO]|0:m] =0, dplO:n][0] =0
3. fori=1ton OO0 (O] 0107100
4. forj =1 tom 0
N . . 0 (Z,])

6. dplilljl =dpli—1]Ij - 1]+ 1

0
7. else
8. dplil[j] = Max(dpli — 11[j1, dplillj — 11) X
9. return dp[n][m] m

Bottom-Up DP for LCS

LCS(X,Y)

(i_ 19])
1. dplO:n]JlO:m] ={-1,—-1,...,—1} dp
2. dplO]|0:m] =0, dplO:n][0] =0
3. fori=1ton OO0 (O] 0107100
4. forj =1 tom 0
N . . 0 (Z,])

6. dplilljl =dpli—1]Ij - 1]+ 1

0
7. else
8. dplil[j] = Max(dpli — 11[j1, dplillj — 11) X
9. return dp[n][m] m

(iaj_ 1)

Bottom-Up DP for LCS

LCS(X,Y)

(i_ 19])
1. dplO:n]JlO:m] ={-1,—-1,...,—1} dp
2. dplO]|0:m] =0, dplO:n][0] =0
3. fori=1ton OO0 (O] 0107100
4. forj =1 tom 0
N . . 0 (Z,])

6. dplilljl =dpli—1]Ij - 1]+ 1

0
7. else
8. dplil[j] = Max(dpli — 11[j1, dplillj — 11) X
9. return dp[n][m] m

N (YR

Bottom-Up DP for LCS

LCS(X, Y)

1. dplO:n]JlO:m] ={-1,—-1,...,—1}

2. dpl|O]|0:m] =0, dp|O : n][0] = 0.

3. fori=1ton

4. forj=1tom

5. if x; ==y,

6. dpli]ljl =dpli - 1][j - 1]+ 1

7. else _ _

8. dplillj] = Max(dpli — 11[j1, dplillj - 11 Time Complexity: O(rm)
9. return dp|n][m]

Bottom-Up vs Top-Down DP

Bottom-Up vs Top-Down DP

Let X = "aaa...a” and ¥V = "aaa...a” be two sequences of 7 many as.

Bottom-Up vs Top-Down DP

Let X = "aaa...a” and ¥V = "aaa...a” be two sequences of 7 many as.

How will top-down LCS run on X and Y?

Bottom-Up vs Top-Down DP

Let X = "aaa...a” and ¥V = "aaa...a” be two sequences of 7 many as.

How will top-down LCS run on X and Y?

LCS(n, n)

Bottom-Up vs Top-Down DP

Let X = "aaa...a” and ¥V = "aaa...a” be two sequences of 7 many as.

How will top-down LCS run on X and Y?

LCS(n,n) —> LCS(n—1,n—1)

Bottom-Up vs Top-Down DP

Let X = "aaa...a” and ¥V = "aaa...a” be two sequences of 7 many as.

How will top-down LCS run on X and Y?

LCS(n,n) —>» LCS(n—1n—1) —> LCS(n—2,n—2)

Bottom-Up vs Top-Down DP

Let X = "aaa...a” and ¥V = "aaa...a” be two sequences of 7 many as.

How will top-down LCS run on X and Y?

LCS(n,n) — LCSm—-—1n—-1) — LCSn—-—2n-2) — —> LCS(0,0)

Bottom-Up vs Top-Down DP

Let X = "aaa...a” and ¥V = "aaa...a” be two sequences of 7 many as.

How will top-down LCS run on X and Y?

LCS(n,n) — LCSm—-—1n—-1) — LCSn—-—2n-2) — —> LCS(0,0)

\w

Bottom-Up vs Top-Down DP

Let X = "aaa...a” and ¥V = "aaa...a” be two sequences of 7 many as.

How will top-down LCS run on X and Y?

LCS(n,n) — LCSm—-—1n—-1) — LCSn—-—2n-2) — —> LCS(0,0)
W

/

Top-down LCS requires n many recursive calls.

Bottom-Up vs Top-Down DP

Let X = "aaa...a” and ¥V = "aaa...a” be two sequences of 7 many as.

How will top-down LCS run on X and Y?

LCS(n,n) — LCSm—-—1n—-1) — LCSn—-—2n-2) — —> LCS(0,0)
W

/

Top-down LCS requires n many recursive calls. Hence, runtime would be O(n).

Bottom-Up vs Top-Down DP

Let X = "aaa...a” and ¥V = "aaa...a” be two sequences of 7 many as.

How will bottom-up LCS run on X and Y?

Bottom-Up vs Top-Down DP

Let X = "aaa...a” and ¥V = "aaa...a” be two sequences of 7 many as.

How will bottom-up LCS run on X and Y?

dap

010101 0]J]0]J]0]0]1O0]O0

OO0 O0O|IOCO|OCO|O0O|1O0O10]0

Bottom-Up vs Top-Down DP

Let X = "aaa...a” and ¥V = "aaa...a” be two sequences of 7 many as.

How will bottom-up LCS run on X and Y?

dap

010101 0]J]0]J]0]0]1O0]O0

OO0 O0O|IOCO|OCO|O0O|1O0O10]0

Bottom-Up vs Top-Down DP

Let X = "aaa...a” and ¥V = "aaa...a” be two sequences of 7 many as.

How will bottom-up LCS run on X and Y?

dap

010101 0]J]0]J]0]0]1O0]O0

OO0 O0O|IOCO|OCO|O0O|1O0O10]0

Bottom-Up vs Top-Down DP

Let X = "aaa...a” and ¥V = "aaa...a” be two sequences of 7 many as.

How will bottom-up LCS run on X and Y?

dap

010101 0]J]0]J]0]0]1O0]O0

OO0 O0O|IOCO|OCO|O0O|1O0O10]0

Bottom-Up vs Top-Down DP

Let X = "aaa...a” and ¥V = "aaa...a” be two sequences of 7 many as.

How will bottom-up LCS run on X and Y?

dap

010101 0]J]0]J]0]0]1O0]O0

OO0 O0O|IOCO|OCO|O0O|1O0O10]0

Bottom-Up vs Top-Down DP

Let X = "aaa...a” and ¥V = "aaa...a” be two sequences of 7 many as.

How will bottom-up LCS run on X and Y?

dap

010101 0]J]0]J]0]0]1O0]O0

OO0 O0O|IOCO|OCO|O0O|1O0O10]0

Bottom-Up vs Top-Down DP

Let X = "aaa...a” and ¥V = "aaa...a” be two sequences of 7 many as.

How will bottom-up LCS run on X and Y?

dap

010101 0]J]0]J]0]0]1O0]O0

OO0 O0O|IOCO|O|O0O|1]O0O10]0

Bottom-Up vs Top-Down DP

Let X = "aaa...a” and ¥V = "aaa...a” be two sequences of 7 many as.

How will bottom-up LCS run on X and Y?

dap

010101 0]J]0]J]0]0]1O0]O0

OO0 O0O|IOCO|OCO|O0O|]O0O10]0

Bottom-Up vs Top-Down DP

Let X = "aaa...a” and ¥ = "aaa...a” be two sequences of 7 many as.

How will bottom-up LCS run on X and Y?

dp

Bottom-Up vs Top-Down DP

Let X = "aaa...a” and ¥ = "aaa...a” be two sequences of 7 many as.

How will bottom-up LCS run on X and Y?

dp

Bottom-up LCS will still fill all 7 *n
<« entries of dp array in O(n?) time.

Bottom-Up vs Top-Down DP

Bottom-Up vs Top-Down DP

® Jop-down solves only those subproblems which are necessary.

Bottom-Up vs Top-Down DP

® Jop-down solves only those subproblems which are necessary.

® Bottom-up solves all the subproblems.

Bottom-Up vs Top-Down DP

® Jop-down solves only those subproblems which are necessary.
® Bottom-up solves all the subproblems.

e |f all subproblems need to be solved, then bottom-up is better due to no recursion overhead.

Bottom-Up vs Top-Down DP

® Jop-down solves only those subproblems which are necessary.
® Bottom-up solves all the subproblems.
e |f all subproblems need to be solved, then bottom-up is better due to no recursion overhead.

® Otherwise, top-down might be better.

