
Lecture 25

Dynamic Programming: LCS (contd.)

Source: Introduction to Algorithms, CLRS



Optimal Substructure in LCS



Optimal Substructure in LCS

Claim: Let  and  be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn



Optimal Substructure in LCS

Claim: Let  and  be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

LCS    will be an LCS of  and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y



Optimal Substructure in LCS

LCS of  and  followed by x1x2…xm−1 y1y2…yn−1 xm

Claim: Let  and  be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

LCS    will be an LCS of  and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y



Optimal Substructure in LCS

Proof:

Claim: Let  and  be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

LCS    will be an LCS of  and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y



Optimal Substructure in LCS

Proof: Suppose length of  is Z k

Claim: Let  and  be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

LCS    will be an LCS of  and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y



Optimal Substructure in LCS

Proof: Suppose length of  is Z k and, hence, length of LCS  is .(x1x2…xm−1, y1y2…yn−1) k − 1

Claim: Let  and  be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

LCS    will be an LCS of  and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y



Optimal Substructure in LCS

Proof: Suppose length of  is Z k

Suppose , not , is an LCS of  and , and .W = w1w2…wl Z X Y l > k

and, hence, length of LCS  is .(x1x2…xm−1, y1y2…yn−1) k − 1

Claim: Let  and  be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

LCS    will be an LCS of  and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y



Optimal Substructure in LCS

Proof: Suppose length of  is Z k

Suppose , not , is an LCS of  and , and .W = w1w2…wl Z X Y l > k

and, hence, length of LCS  is .(x1x2…xm−1, y1y2…yn−1) k − 1

Clearly,  ends with  (or ).W xm yn

Claim: Let  and  be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

LCS    will be an LCS of  and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y



Optimal Substructure in LCS

Proof: Suppose length of  is Z k

Suppose , not , is an LCS of  and , and .W = w1w2…wl Z X Y l > k

and, hence, length of LCS  is .(x1x2…xm−1, y1y2…yn−1) k − 1

Clearly,  ends with  (or ).W xm yn

Claim: Let  and  be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

(Why?)

LCS    will be an LCS of  and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y



Optimal Substructure in LCS

Proof: Suppose length of  is Z k

Suppose , not , is an LCS of  and , and .W = w1w2…wl Z X Y l > k

and, hence, length of LCS  is .(x1x2…xm−1, y1y2…yn−1) k − 1

Clearly,  ends with  (or ).W xm yn

Claim: Let  and  be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

(Why?)

LCS    will be an LCS of  and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y

X = x1x2x3…xm−1xm

Y = y1y2y3…yn−1yn

W = w1w2w3…wl−1wl



Optimal Substructure in LCS

Proof: Suppose length of  is Z k

Suppose , not , is an LCS of  and , and .W = w1w2…wl Z X Y l > k

and, hence, length of LCS  is .(x1x2…xm−1, y1y2…yn−1) k − 1

Clearly,  ends with  (or ).W xm yn

Claim: Let  and  be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

(Why?)

LCS    will be an LCS of  and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y

X = x1x2x3…xm−1xm

Y = y1y2y3…yn−1yn

W = w1w2w3…wl−1wl



Optimal Substructure in LCS

Proof: Suppose length of  is Z k

Suppose , not , is an LCS of  and , and .W = w1w2…wl Z X Y l > k

and, hence, length of LCS  is .(x1x2…xm−1, y1y2…yn−1) k − 1

Clearly,  ends with  (or ).W xm yn

Claim: Let  and  be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

(Why?)

LCS    will be an LCS of  and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y

X = x1x2x3…xm−1xm

Y = y1y2y3…yn−1yn

W = w1w2w3…wl−1wl

 must be a common subsequence

of  and 

w1w2w3…wl−1
x1x2x3…xm−1 y1y2y3…yn−1



Optimal Substructure in LCS

Proof: Suppose length of  is Z k

Suppose , not , is an LCS of  and , and .W = w1w2…wl Z X Y l > k

and, hence, length of LCS  is .(x1x2…xm−1, y1y2…yn−1) k − 1

Clearly,  ends with  (or ).W xm yn

Claim: Let  and  be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

(Why?)

LCS    will be an LCS of  and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y



Optimal Substructure in LCS

Proof: Suppose length of  is Z k

Suppose , not , is an LCS of  and , and .W = w1w2…wl Z X Y l > k

and, hence, length of LCS  is .(x1x2…xm−1, y1y2…yn−1) k − 1

Clearly,  ends with  (or ).W xm yn

Then  will be a CS of  and .w1w2…wl−1 x1x2…xm−1 y1y2…yn−1

Claim: Let  and  be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

(Why?)

LCS    will be an LCS of  and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y



Optimal Substructure in LCS

Proof: Suppose length of  is Z k

Suppose , not , is an LCS of  and , and .W = w1w2…wl Z X Y l > k

and, hence, length of LCS  is .(x1x2…xm−1, y1y2…yn−1) k − 1

Clearly,  ends with  (or ).W xm yn

Then  will be a CS of  and .w1w2…wl−1 x1x2…xm−1 y1y2…yn−1

This is a contradiction as LCS  is shorter than .(x1x2…xm−1, y1y2…yn−1) w1w2…wl−1

Claim: Let  and  be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

(Why?)

LCS    will be an LCS of  and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y



Optimal Substructure in LCS

Proof: Suppose length of  is Z k

Suppose , not , is an LCS of  and , and .W = w1w2…wl Z X Y l > k

and, hence, length of LCS  is .(x1x2…xm−1, y1y2…yn−1) k − 1

Clearly,  ends with  (or ).W xm yn

Then  will be a CS of  and .w1w2…wl−1 x1x2…xm−1 y1y2…yn−1

This is a contradiction as LCS  is shorter than .(x1x2…xm−1, y1y2…yn−1) w1w2…wl−1

length k − 1

Claim: Let  and  be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

(Why?)

LCS    will be an LCS of  and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y



Optimal Substructure in LCS

Proof: Suppose length of  is Z k

Suppose , not , is an LCS of  and , and .W = w1w2…wl Z X Y l > k

and, hence, length of LCS  is .(x1x2…xm−1, y1y2…yn−1) k − 1

Clearly,  ends with  (or ).W xm yn

Then  will be a CS of  and .w1w2…wl−1 x1x2…xm−1 y1y2…yn−1

This is a contradiction as LCS  is shorter than .(x1x2…xm−1, y1y2…yn−1) w1w2…wl−1

length k − 1 length l − 1

Claim: Let  and  be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

(Why?)

LCS    will be an LCS of  and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y



Optimal Substructure in LCS

Proof: Suppose length of  is Z k

Suppose , not , is an LCS of  and , and .W = w1w2…wl Z X Y l > k

and, hence, length of LCS  is .(x1x2…xm−1, y1y2…yn−1) k − 1

Clearly,  ends with  (or ).W xm yn

Then  will be a CS of  and .w1w2…wl−1 x1x2…xm−1 y1y2…yn−1

This is a contradiction as LCS  is shorter than .(x1x2…xm−1, y1y2…yn−1) w1w2…wl−1

length k − 1 length l − 1

◼

Claim: Let  and  be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

(Why?)

LCS    will be an LCS of  and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y



Optimal Substructure in LCS



Optimal Substructure in LCS
Claim: Let  and  be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn



Optimal Substructure in LCS
Claim: Let  and  be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS  and LCS  will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)



Optimal Substructure in LCS

Proof:

Claim: Let  and  be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS  and LCS  will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)



Optimal Substructure in LCS

Proof:

Claim: Let  and  be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS  and LCS  will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Suppose neither LCS  nor LCS  is an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)



Optimal Substructure in LCS

Proof:

Claim: Let  and  be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS  and LCS  will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Suppose neither LCS  nor LCS  is an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Let LCS  be of length .(x1x2…xm−1, y1y2…yn) j



Optimal Substructure in LCS

Proof:

Claim: Let  and  be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS  and LCS  will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Suppose neither LCS  nor LCS  is an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Let LCS  be of length .(x1x2…xm−1, y1y2…yn) j

Let LCS  be of length .(x1x2…xm, y1y2…yn−1) k



Optimal Substructure in LCS

Proof:

Claim: Let  and  be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS  and LCS  will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Suppose neither LCS  nor LCS  is an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Let LCS  be of length .(x1x2…xm−1, y1y2…yn) j

Let LCS  be of length .(x1x2…xm, y1y2…yn−1) k

Let  be an LCS  of length    Max .W (X, Y) l > ( j, k)



Optimal Substructure in LCS

Proof:

Claim: Let  and  be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS  and LCS  will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Suppose neither LCS  nor LCS  is an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Let LCS  be of length .(x1x2…xm−1, y1y2…yn) j

Let LCS  be of length .(x1x2…xm, y1y2…yn−1) k

Let  be an LCS  of length    Max .W (X, Y) l > ( j, k)

Since ,  cannot end with both  and .xm ≠ yn W xm yn



Optimal Substructure in LCS

Proof:

Claim: Let  and  be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS  and LCS  will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Suppose neither LCS  nor LCS  is an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Let LCS  be of length .(x1x2…xm−1, y1y2…yn) j

Let LCS  be of length .(x1x2…xm, y1y2…yn−1) k

Let  be an LCS  of length    Max .W (X, Y) l > ( j, k)

Since ,  cannot end with both  and .xm ≠ yn W xm yn

X = x1x2x3…xm−1xm

Y = y1y2y3…yn−1yn

W = w1w2w3…wl−1wl



Optimal Substructure in LCS

Proof:

Claim: Let  and  be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS  and LCS  will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Suppose neither LCS  nor LCS  is an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Let LCS  be of length .(x1x2…xm−1, y1y2…yn) j

Let LCS  be of length .(x1x2…xm, y1y2…yn−1) k

Let  be an LCS  of length    Max .W (X, Y) l > ( j, k)

Since ,  cannot end with both  and .xm ≠ yn W xm yn

X = x1x2x3…xm−1xm

Y = y1y2y3…yn−1yn

W = w1w2w3…wl−1wl



Optimal Substructure in LCS

Proof:

Claim: Let  and  be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS  and LCS  will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Suppose neither LCS  nor LCS  is an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Let LCS  be of length .(x1x2…xm−1, y1y2…yn) j

Let LCS  be of length .(x1x2…xm, y1y2…yn−1) k

Let  be an LCS  of length    Max .W (X, Y) l > ( j, k)

Since ,  cannot end with both  and .xm ≠ yn W xm yn

If  doesn’t end with  (WLOG), then  will be an CS of  and .W xm W x1x2…xm−1 y1y2…yn

X = x1x2x3…xm−1xm

Y = y1y2y3…yn−1yn

W = w1w2w3…wl−1wl



Optimal Substructure in LCS

Proof:

Claim: Let  and  be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS  and LCS  will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Suppose neither LCS  nor LCS  is an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Let LCS  be of length .(x1x2…xm−1, y1y2…yn) j

Let LCS  be of length .(x1x2…xm, y1y2…yn−1) k

Let  be an LCS  of length    Max .W (X, Y) l > ( j, k)

Since ,  cannot end with both  and .xm ≠ yn W xm yn

If  doesn’t end with  (WLOG), then  will be an CS of  and .W xm W x1x2…xm−1 y1y2…yn

This is a contradiction as  is longer than LCS .W (x1x2…xm−1, y1y2…yn)

X = x1x2x3…xm−1xm

Y = y1y2y3…yn−1yn

W = w1w2w3…wl−1wl



Optimal Substructure in LCS

Proof:

Claim: Let  and  be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS  and LCS  will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Suppose neither LCS  nor LCS  is an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Let LCS  be of length .(x1x2…xm−1, y1y2…yn) j

Let LCS  be of length .(x1x2…xm, y1y2…yn−1) k

Let  be an LCS  of length    Max .W (X, Y) l > ( j, k)

Since ,  cannot end with both  and .xm ≠ yn W xm yn

If  doesn’t end with  (WLOG), then  will be an CS of  and .W xm W x1x2…xm−1 y1y2…yn

This is a contradiction as  is longer than LCS .W (x1x2…xm−1, y1y2…yn)

length l

X = x1x2x3…xm−1xm

Y = y1y2y3…yn−1yn

W = w1w2w3…wl−1wl



Optimal Substructure in LCS

Proof:

Claim: Let  and  be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS  and LCS  will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Suppose neither LCS  nor LCS  is an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Let LCS  be of length .(x1x2…xm−1, y1y2…yn) j

Let LCS  be of length .(x1x2…xm, y1y2…yn−1) k

Let  be an LCS  of length    Max .W (X, Y) l > ( j, k)

Since ,  cannot end with both  and .xm ≠ yn W xm yn

If  doesn’t end with  (WLOG), then  will be an CS of  and .W xm W x1x2…xm−1 y1y2…yn

This is a contradiction as  is longer than LCS .W (x1x2…xm−1, y1y2…yn)

length l length j

X = x1x2x3…xm−1xm

Y = y1y2y3…yn−1yn

W = w1w2w3…wl−1wl



Optimal Substructure in LCS

Proof:

Claim: Let  and  be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

◼

one out of LCS  and LCS  will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Suppose neither LCS  nor LCS  is an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Let LCS  be of length .(x1x2…xm−1, y1y2…yn) j

Let LCS  be of length .(x1x2…xm, y1y2…yn−1) k

Let  be an LCS  of length    Max .W (X, Y) l > ( j, k)

Since ,  cannot end with both  and .xm ≠ yn W xm yn

If  doesn’t end with  (WLOG), then  will be an CS of  and .W xm W x1x2…xm−1 y1y2…yn

This is a contradiction as  is longer than LCS .W (x1x2…xm−1, y1y2…yn)

length l length j

X = x1x2x3…xm−1xm

Y = y1y2y3…yn−1yn

W = w1w2w3…wl−1wl



Recurrence for LCS



Recurrence for LCS

Let  and  be two sequences.X = x1x2…xm Y = y1y2…yn



Recurrence for LCS

Let  and  be two sequences.X = x1x2…xm Y = y1y2…yn

Let   length of the LCS of  and .LCS(i, j) = x1x2…xi y1y2…yj



Recurrence for LCS

Let  and  be two sequences.X = x1x2…xm Y = y1y2…yn

Let   length of the LCS of  and .LCS(i, j) = x1x2…xi y1y2…yj Then,



Recurrence for LCS

Let  and  be two sequences.X = x1x2…xm Y = y1y2…yn

Let   length of the LCS of  and .LCS(i, j) = x1x2…xi y1y2…yj Then,

 LCS(i, j) =



Recurrence for LCS

Let  and  be two sequences.X = x1x2…xm Y = y1y2…yn

Let   length of the LCS of  and .LCS(i, j) = x1x2…xi y1y2…yj Then,

 LCS(i, j) =



Recurrence for LCS

Let  and  be two sequences.X = x1x2…xm Y = y1y2…yn

Let   length of the LCS of  and .LCS(i, j) = x1x2…xi y1y2…yj Then,

 LCS(i, j)

,    if  or 0 i = 0 j = 0

=



Recurrence for LCS

Let  and  be two sequences.X = x1x2…xm Y = y1y2…yn

Let   length of the LCS of  and .LCS(i, j) = x1x2…xi y1y2…yj Then,

 LCS(i, j)

,    if  or 0 i = 0 j = 0

,     if LCS(i − 1,j − 1) + 1 xi = yj=



Recurrence for LCS
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,    if  or 0 i = 0 j = 0

,     if LCS(i − 1,j − 1) + 1 xi = yj
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=
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Overlapping subproblems
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  dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 , dp[0][0 : m] = 0 dp[0 : n][0] = 0
 LCS :(i, j)
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Why?
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Let   “aaa a” and   “aaa a” be two sequences of  many as.X = … Y = … n

How will top-down LCS run on  and ?X Y

LCS(n, n) LCS(n − 1,n − 1) LCS(n − 2,n − 2) LCS(0,0)…

Top-down LCS requires  many recursive calls.n Hence, runtime would be .Θ(n)
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Let   “aaa a” and   “aaa a” be two sequences of  many as.X = … Y = … n

How will bottom-up LCS run on  and ?X Y

0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0

dp

n

n

Bottom-up LCS will still fill all  

entries of  array in  time. 

n * n
dp Θ(n2)
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Bottom-Up vs Top-Down DP

• If all subproblems need to be solved, then bottom-up is better due to no recursion overhead.

• Otherwise, top-down might be better.

• Top-down solves only those subproblems which are necessary.

• Bottom-up solves all the subproblems.


