Lecture 25

Dynamic Programming: LCS (contd.)

Source: Introduction to Algorithms, CLRS
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LCS(X, Y)

1. dplO:n]JlO:m] ={-1,—-1,...,—1}

2. dpl|O]|0:m] =0, dp|O : n][0] = 0.

3. fori=1ton

4. forj=1tom

5. if x; ==y,

6. dpli]ljl =dpli - 1][j - 1]+ 1

7. else _ _

8. dplillj] = Max(dpli — 11[j1, dplillj - 11 Time Complexity: O(rm)
9. return dp|n][m]
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Bottom-Up vs Top-Down DP

Let X = "aaa...a” and ¥V = "aaa...a” be two sequences of 7 many as.

How will top-down LCS run on X and Y?

LCS(n,n) — LCSm—-—1n—-1) — LCSn—-—2n-2) — —> LCS(0,0)
W

/

Top-down LCS requires n many recursive calls. Hence, runtime would be O(n).
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Bottom-Up vs Top-Down DP

Let X = "aaa...a” and ¥ = "aaa...a” be two sequences of 7 many as.

How will bottom-up LCS run on X and Y?

dp

Bottom-up LCS will still fill all 7 *n
<« entries of dp array in O(n?) time.
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Bottom-Up vs Top-Down DP

® Jop-down solves only those subproblems which are necessary.
® Bottom-up solves all the subproblems.
e |f all subproblems need to be solved, then bottom-up is better due to no recursion overhead.

® Otherwise, top-down might be better.



