
Lecture 25

Dynamic Programming: LCS (contd.)

Source: Introduction to Algorithms, CLRS

Optimal Substructure in LCS

Optimal Substructure in LCS

Claim: Let and be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

Optimal Substructure in LCS

Claim: Let and be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

LCS will be an LCS of and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y

Optimal Substructure in LCS

LCS of and followed by x1x2…xm−1 y1y2…yn−1 xm

Claim: Let and be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

LCS will be an LCS of and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y

Optimal Substructure in LCS

Proof:

Claim: Let and be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

LCS will be an LCS of and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y

Optimal Substructure in LCS

Proof: Suppose length of is Z k

Claim: Let and be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

LCS will be an LCS of and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y

Optimal Substructure in LCS

Proof: Suppose length of is Z k and, hence, length of LCS is .(x1x2…xm−1, y1y2…yn−1) k − 1

Claim: Let and be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

LCS will be an LCS of and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y

Optimal Substructure in LCS

Proof: Suppose length of is Z k

Suppose , not , is an LCS of and , and .W = w1w2…wl Z X Y l > k

and, hence, length of LCS is .(x1x2…xm−1, y1y2…yn−1) k − 1

Claim: Let and be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

LCS will be an LCS of and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y

Optimal Substructure in LCS

Proof: Suppose length of is Z k

Suppose , not , is an LCS of and , and .W = w1w2…wl Z X Y l > k

and, hence, length of LCS is .(x1x2…xm−1, y1y2…yn−1) k − 1

Clearly, ends with (or).W xm yn

Claim: Let and be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

LCS will be an LCS of and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y

Optimal Substructure in LCS

Proof: Suppose length of is Z k

Suppose , not , is an LCS of and , and .W = w1w2…wl Z X Y l > k

and, hence, length of LCS is .(x1x2…xm−1, y1y2…yn−1) k − 1

Clearly, ends with (or).W xm yn

Claim: Let and be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

(Why?)

LCS will be an LCS of and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y

Optimal Substructure in LCS

Proof: Suppose length of is Z k

Suppose , not , is an LCS of and , and .W = w1w2…wl Z X Y l > k

and, hence, length of LCS is .(x1x2…xm−1, y1y2…yn−1) k − 1

Clearly, ends with (or).W xm yn

Claim: Let and be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

(Why?)

LCS will be an LCS of and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y

X = x1x2x3…xm−1xm

Y = y1y2y3…yn−1yn

W = w1w2w3…wl−1wl

Optimal Substructure in LCS

Proof: Suppose length of is Z k

Suppose , not , is an LCS of and , and .W = w1w2…wl Z X Y l > k

and, hence, length of LCS is .(x1x2…xm−1, y1y2…yn−1) k − 1

Clearly, ends with (or).W xm yn

Claim: Let and be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

(Why?)

LCS will be an LCS of and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y

X = x1x2x3…xm−1xm

Y = y1y2y3…yn−1yn

W = w1w2w3…wl−1wl

Optimal Substructure in LCS

Proof: Suppose length of is Z k

Suppose , not , is an LCS of and , and .W = w1w2…wl Z X Y l > k

and, hence, length of LCS is .(x1x2…xm−1, y1y2…yn−1) k − 1

Clearly, ends with (or).W xm yn

Claim: Let and be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

(Why?)

LCS will be an LCS of and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y

X = x1x2x3…xm−1xm

Y = y1y2y3…yn−1yn

W = w1w2w3…wl−1wl

 must be a common subsequence

of and

w1w2w3…wl−1
x1x2x3…xm−1 y1y2y3…yn−1

Optimal Substructure in LCS

Proof: Suppose length of is Z k

Suppose , not , is an LCS of and , and .W = w1w2…wl Z X Y l > k

and, hence, length of LCS is .(x1x2…xm−1, y1y2…yn−1) k − 1

Clearly, ends with (or).W xm yn

Claim: Let and be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

(Why?)

LCS will be an LCS of and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y

Optimal Substructure in LCS

Proof: Suppose length of is Z k

Suppose , not , is an LCS of and , and .W = w1w2…wl Z X Y l > k

and, hence, length of LCS is .(x1x2…xm−1, y1y2…yn−1) k − 1

Clearly, ends with (or).W xm yn

Then will be a CS of and .w1w2…wl−1 x1x2…xm−1 y1y2…yn−1

Claim: Let and be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

(Why?)

LCS will be an LCS of and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y

Optimal Substructure in LCS

Proof: Suppose length of is Z k

Suppose , not , is an LCS of and , and .W = w1w2…wl Z X Y l > k

and, hence, length of LCS is .(x1x2…xm−1, y1y2…yn−1) k − 1

Clearly, ends with (or).W xm yn

Then will be a CS of and .w1w2…wl−1 x1x2…xm−1 y1y2…yn−1

This is a contradiction as LCS is shorter than .(x1x2…xm−1, y1y2…yn−1) w1w2…wl−1

Claim: Let and be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

(Why?)

LCS will be an LCS of and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y

Optimal Substructure in LCS

Proof: Suppose length of is Z k

Suppose , not , is an LCS of and , and .W = w1w2…wl Z X Y l > k

and, hence, length of LCS is .(x1x2…xm−1, y1y2…yn−1) k − 1

Clearly, ends with (or).W xm yn

Then will be a CS of and .w1w2…wl−1 x1x2…xm−1 y1y2…yn−1

This is a contradiction as LCS is shorter than .(x1x2…xm−1, y1y2…yn−1) w1w2…wl−1

length k − 1

Claim: Let and be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

(Why?)

LCS will be an LCS of and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y

Optimal Substructure in LCS

Proof: Suppose length of is Z k

Suppose , not , is an LCS of and , and .W = w1w2…wl Z X Y l > k

and, hence, length of LCS is .(x1x2…xm−1, y1y2…yn−1) k − 1

Clearly, ends with (or).W xm yn

Then will be a CS of and .w1w2…wl−1 x1x2…xm−1 y1y2…yn−1

This is a contradiction as LCS is shorter than .(x1x2…xm−1, y1y2…yn−1) w1w2…wl−1

length k − 1 length l − 1

Claim: Let and be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

(Why?)

LCS will be an LCS of and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y

Optimal Substructure in LCS

Proof: Suppose length of is Z k

Suppose , not , is an LCS of and , and .W = w1w2…wl Z X Y l > k

and, hence, length of LCS is .(x1x2…xm−1, y1y2…yn−1) k − 1

Clearly, ends with (or).W xm yn

Then will be a CS of and .w1w2…wl−1 x1x2…xm−1 y1y2…yn−1

This is a contradiction as LCS is shorter than .(x1x2…xm−1, y1y2…yn−1) w1w2…wl−1

length k − 1 length l − 1

◼

Claim: Let and be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

(Why?)

LCS will be an LCS of and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y

Optimal Substructure in LCS

Optimal Substructure in LCS
Claim: Let and be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

Optimal Substructure in LCS
Claim: Let and be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS and LCS will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Optimal Substructure in LCS

Proof:

Claim: Let and be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS and LCS will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Optimal Substructure in LCS

Proof:

Claim: Let and be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS and LCS will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Suppose neither LCS nor LCS is an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Optimal Substructure in LCS

Proof:

Claim: Let and be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS and LCS will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Suppose neither LCS nor LCS is an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Let LCS be of length .(x1x2…xm−1, y1y2…yn) j

Optimal Substructure in LCS

Proof:

Claim: Let and be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS and LCS will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Suppose neither LCS nor LCS is an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Let LCS be of length .(x1x2…xm−1, y1y2…yn) j

Let LCS be of length .(x1x2…xm, y1y2…yn−1) k

Optimal Substructure in LCS

Proof:

Claim: Let and be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS and LCS will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Suppose neither LCS nor LCS is an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Let LCS be of length .(x1x2…xm−1, y1y2…yn) j

Let LCS be of length .(x1x2…xm, y1y2…yn−1) k

Let be an LCS of length Max .W (X, Y) l > (j, k)

Optimal Substructure in LCS

Proof:

Claim: Let and be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS and LCS will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Suppose neither LCS nor LCS is an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Let LCS be of length .(x1x2…xm−1, y1y2…yn) j

Let LCS be of length .(x1x2…xm, y1y2…yn−1) k

Let be an LCS of length Max .W (X, Y) l > (j, k)

Since , cannot end with both and .xm ≠ yn W xm yn

Optimal Substructure in LCS

Proof:

Claim: Let and be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS and LCS will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Suppose neither LCS nor LCS is an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Let LCS be of length .(x1x2…xm−1, y1y2…yn) j

Let LCS be of length .(x1x2…xm, y1y2…yn−1) k

Let be an LCS of length Max .W (X, Y) l > (j, k)

Since , cannot end with both and .xm ≠ yn W xm yn

X = x1x2x3…xm−1xm

Y = y1y2y3…yn−1yn

W = w1w2w3…wl−1wl

Optimal Substructure in LCS

Proof:

Claim: Let and be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS and LCS will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Suppose neither LCS nor LCS is an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Let LCS be of length .(x1x2…xm−1, y1y2…yn) j

Let LCS be of length .(x1x2…xm, y1y2…yn−1) k

Let be an LCS of length Max .W (X, Y) l > (j, k)

Since , cannot end with both and .xm ≠ yn W xm yn

X = x1x2x3…xm−1xm

Y = y1y2y3…yn−1yn

W = w1w2w3…wl−1wl

Optimal Substructure in LCS

Proof:

Claim: Let and be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS and LCS will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Suppose neither LCS nor LCS is an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Let LCS be of length .(x1x2…xm−1, y1y2…yn) j

Let LCS be of length .(x1x2…xm, y1y2…yn−1) k

Let be an LCS of length Max .W (X, Y) l > (j, k)

Since , cannot end with both and .xm ≠ yn W xm yn

If doesn’t end with (WLOG), then will be an CS of and .W xm W x1x2…xm−1 y1y2…yn

X = x1x2x3…xm−1xm

Y = y1y2y3…yn−1yn

W = w1w2w3…wl−1wl

Optimal Substructure in LCS

Proof:

Claim: Let and be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS and LCS will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Suppose neither LCS nor LCS is an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Let LCS be of length .(x1x2…xm−1, y1y2…yn) j

Let LCS be of length .(x1x2…xm, y1y2…yn−1) k

Let be an LCS of length Max .W (X, Y) l > (j, k)

Since , cannot end with both and .xm ≠ yn W xm yn

If doesn’t end with (WLOG), then will be an CS of and .W xm W x1x2…xm−1 y1y2…yn

This is a contradiction as is longer than LCS .W (x1x2…xm−1, y1y2…yn)

X = x1x2x3…xm−1xm

Y = y1y2y3…yn−1yn

W = w1w2w3…wl−1wl

Optimal Substructure in LCS

Proof:

Claim: Let and be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS and LCS will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Suppose neither LCS nor LCS is an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Let LCS be of length .(x1x2…xm−1, y1y2…yn) j

Let LCS be of length .(x1x2…xm, y1y2…yn−1) k

Let be an LCS of length Max .W (X, Y) l > (j, k)

Since , cannot end with both and .xm ≠ yn W xm yn

If doesn’t end with (WLOG), then will be an CS of and .W xm W x1x2…xm−1 y1y2…yn

This is a contradiction as is longer than LCS .W (x1x2…xm−1, y1y2…yn)

length l

X = x1x2x3…xm−1xm

Y = y1y2y3…yn−1yn

W = w1w2w3…wl−1wl

Optimal Substructure in LCS

Proof:

Claim: Let and be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS and LCS will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Suppose neither LCS nor LCS is an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Let LCS be of length .(x1x2…xm−1, y1y2…yn) j

Let LCS be of length .(x1x2…xm, y1y2…yn−1) k

Let be an LCS of length Max .W (X, Y) l > (j, k)

Since , cannot end with both and .xm ≠ yn W xm yn

If doesn’t end with (WLOG), then will be an CS of and .W xm W x1x2…xm−1 y1y2…yn

This is a contradiction as is longer than LCS .W (x1x2…xm−1, y1y2…yn)

length l length j

X = x1x2x3…xm−1xm

Y = y1y2y3…yn−1yn

W = w1w2w3…wl−1wl

Optimal Substructure in LCS

Proof:

Claim: Let and be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

◼

one out of LCS and LCS will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Suppose neither LCS nor LCS is an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

Let LCS be of length .(x1x2…xm−1, y1y2…yn) j

Let LCS be of length .(x1x2…xm, y1y2…yn−1) k

Let be an LCS of length Max .W (X, Y) l > (j, k)

Since , cannot end with both and .xm ≠ yn W xm yn

If doesn’t end with (WLOG), then will be an CS of and .W xm W x1x2…xm−1 y1y2…yn

This is a contradiction as is longer than LCS .W (x1x2…xm−1, y1y2…yn)

length l length j

X = x1x2x3…xm−1xm

Y = y1y2y3…yn−1yn

W = w1w2w3…wl−1wl

Recurrence for LCS

Recurrence for LCS

Let and be two sequences.X = x1x2…xm Y = y1y2…yn

Recurrence for LCS

Let and be two sequences.X = x1x2…xm Y = y1y2…yn

Let length of the LCS of and .LCS(i, j) = x1x2…xi y1y2…yj

Recurrence for LCS

Let and be two sequences.X = x1x2…xm Y = y1y2…yn

Let length of the LCS of and .LCS(i, j) = x1x2…xi y1y2…yj Then,

Recurrence for LCS

Let and be two sequences.X = x1x2…xm Y = y1y2…yn

Let length of the LCS of and .LCS(i, j) = x1x2…xi y1y2…yj Then,

 LCS(i, j) =

Recurrence for LCS

Let and be two sequences.X = x1x2…xm Y = y1y2…yn

Let length of the LCS of and .LCS(i, j) = x1x2…xi y1y2…yj Then,

 LCS(i, j) =

Recurrence for LCS

Let and be two sequences.X = x1x2…xm Y = y1y2…yn

Let length of the LCS of and .LCS(i, j) = x1x2…xi y1y2…yj Then,

 LCS(i, j)

, if or 0 i = 0 j = 0

=

Recurrence for LCS

Let and be two sequences.X = x1x2…xm Y = y1y2…yn

Let length of the LCS of and .LCS(i, j) = x1x2…xi y1y2…yj Then,

 LCS(i, j)

, if or 0 i = 0 j = 0

, if LCS(i − 1,j − 1) + 1 xi = yj=

Recurrence for LCS

Let and be two sequences.X = x1x2…xm Y = y1y2…yn

Let length of the LCS of and .LCS(i, j) = x1x2…xi y1y2…yj Then,

 LCS(i, j)

, if or 0 i = 0 j = 0

, if LCS(i − 1,j − 1) + 1 xi = yj

, if max(LCS(i − 1,j), LCS(i, j − 1)) xi ≠ yj

=

Overlapping Subproblems in LCS

Overlapping Subproblems in LCS

LCS(5,8)

Overlapping Subproblems in LCS

LCS(5,8)

LCS(4,8) LCS(5,7)

Overlapping Subproblems in LCS

LCS(5,8)

LCS(4,8) LCS(5,7)

LCS(3,8) LCS(4,7)

Overlapping Subproblems in LCS

LCS(5,8)

LCS(4,8) LCS(5,7)

LCS(3,8) LCS(4,7) LCS(4,7) LCS(5,6)

Overlapping Subproblems in LCS

LCS(5,8)

LCS(4,8) LCS(5,7)

LCS(3,8) LCS(4,7) LCS(4,7) LCS(5,6)

Overlapping subproblems

Top-Down DP for LCS

Top-Down DP for LCS

 dp[0 : n][0 : m] = {−1, − 1,…, − 1}

Top-Down DP for LCS

 dp[0 : n][0 : m] = {−1, − 1,…, − 1}

 stores dp[i][j] LCS(i, j)

Top-Down DP for LCS

 dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 , dp[0][0 : m] = 0 dp[0 : n][0] = 0

 stores dp[i][j] LCS(i, j)

Top-Down DP for LCS

 dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 , dp[0][0 : m] = 0 dp[0 : n][0] = 0

 stores dp[i][j] LCS(i, j)

0 0 0 0 0 0 0

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

dp

n

m

Top-Down DP for LCS

 dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 , dp[0][0 : m] = 0 dp[0 : n][0] = 0

 stores dp[i][j] LCS(i, j)

Top-Down DP for LCS

 dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 , dp[0][0 : m] = 0 dp[0 : n][0] = 0
 LCS :(i, j)

 stores dp[i][j] LCS(i, j)

Top-Down DP for LCS

 dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 , dp[0][0 : m] = 0 dp[0 : n][0] = 0
 LCS :(i, j)

 stores dp[i][j] LCS(i, j)

Call with LCS(|X | , |Y |)

Top-Down DP for LCS

 dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 , dp[0][0 : m] = 0 dp[0 : n][0] = 0
 LCS :(i, j)

 stores dp[i][j] LCS(i, j)

Top-Down DP for LCS

 dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 , dp[0][0 : m] = 0 dp[0 : n][0] = 0
 LCS :(i, j)
 1. if (dp[i][j] ≠ − 1)

 stores dp[i][j] LCS(i, j)

Top-Down DP for LCS

 dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 , dp[0][0 : m] = 0 dp[0 : n][0] = 0
 LCS :(i, j)
 1. if (dp[i][j] ≠ − 1)
 2. return dp[i][j]

 stores dp[i][j] LCS(i, j)

Top-Down DP for LCS

 dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 , dp[0][0 : m] = 0 dp[0 : n][0] = 0
 LCS :(i, j)
 1. if (dp[i][j] ≠ − 1)
 2. return dp[i][j]
 3. if xi == yj

 stores dp[i][j] LCS(i, j)

Top-Down DP for LCS

 dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 , dp[0][0 : m] = 0 dp[0 : n][0] = 0
 LCS :(i, j)
 1. if (dp[i][j] ≠ − 1)
 2. return dp[i][j]
 3. if xi == yj

 4. LCSdp[i][j] = (i − 1,j − 1) + 1

 stores dp[i][j] LCS(i, j)

Top-Down DP for LCS

 dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 , dp[0][0 : m] = 0 dp[0 : n][0] = 0
 LCS :(i, j)
 1. if (dp[i][j] ≠ − 1)
 2. return dp[i][j]
 3. if xi == yj

 4. LCSdp[i][j] = (i − 1,j − 1) + 1
 5. else

 stores dp[i][j] LCS(i, j)

Top-Down DP for LCS

 dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 , dp[0][0 : m] = 0 dp[0 : n][0] = 0
 LCS :(i, j)
 1. if (dp[i][j] ≠ − 1)
 2. return dp[i][j]
 3. if xi == yj

 4. LCSdp[i][j] = (i − 1,j − 1) + 1
 5. else
 6. Max LCS LCSdp[i][j] = ((i − 1,j), (i, j − 1))

 stores dp[i][j] LCS(i, j)

Top-Down DP for LCS

 dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 , dp[0][0 : m] = 0 dp[0 : n][0] = 0
 LCS :(i, j)
 1. if (dp[i][j] ≠ − 1)
 2. return dp[i][j]
 3. if xi == yj

 4. LCSdp[i][j] = (i − 1,j − 1) + 1
 5. else
 6. Max LCS LCSdp[i][j] = ((i − 1,j), (i, j − 1))
 7. return dp[i][j]

 stores dp[i][j] LCS(i, j)

Top-Down DP for LCS

 dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 , dp[0][0 : m] = 0 dp[0 : n][0] = 0
 LCS :(i, j)
 1. if (dp[i][j] ≠ − 1)
 2. return dp[i][j]
 3. if xi == yj

 4. LCSdp[i][j] = (i − 1,j − 1) + 1
 5. else
 6. Max LCS LCSdp[i][j] = ((i − 1,j), (i, j − 1))
 7. return dp[i][j]

 stores dp[i][j] LCS(i, j)

Time Complexity: O(nm)

Top-Down DP for LCS

 dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 , dp[0][0 : m] = 0 dp[0 : n][0] = 0
 LCS :(i, j)
 1. if (dp[i][j] ≠ − 1)
 2. return dp[i][j]
 3. if xi == yj

 4. LCSdp[i][j] = (i − 1,j − 1) + 1
 5. else
 6. Max LCS LCSdp[i][j] = ((i − 1,j), (i, j − 1))
 7. return dp[i][j]

 stores dp[i][j] LCS(i, j)

Time Complexity: O(nm)

Why?

Bottom-Up DP for LCS

Bottom-Up DP for LCS

 LCS(X, Y)

Bottom-Up DP for LCS

 LCS(X, Y)
 1. dp[0 : n][0 : m] = {−1, − 1,…, − 1}

Bottom-Up DP for LCS

 LCS(X, Y)
 1. dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 2. , dp[0][0 : m] = 0 dp[0 : n][0] = 0

Bottom-Up DP for LCS

 LCS(X, Y)
 1. dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 2. , dp[0][0 : m] = 0 dp[0 : n][0] = 0

0 0 0 0 0 0 0

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

dp

n

m

Bottom-Up DP for LCS

 LCS(X, Y)
 1. dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 2. , dp[0][0 : m] = 0 dp[0 : n][0] = 0
 3. for to i = 1 n 0 0 0 0 0 0 0

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

dp

n

m

Bottom-Up DP for LCS

 LCS(X, Y)
 1. dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 2. , dp[0][0 : m] = 0 dp[0 : n][0] = 0
 3. for to i = 1 n
 4. for to j = 1 m

0 0 0 0 0 0 0

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

dp

n

m

Bottom-Up DP for LCS

 LCS(X, Y)
 1. dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 2. , dp[0][0 : m] = 0 dp[0 : n][0] = 0
 3. for to i = 1 n
 4. for to j = 1 m
 5. if xi == yj

0 0 0 0 0 0 0

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

dp

n

m

Bottom-Up DP for LCS

 LCS(X, Y)
 1. dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 2. , dp[0][0 : m] = 0 dp[0 : n][0] = 0
 3. for to i = 1 n
 4. for to j = 1 m
 5. if xi == yj

 6. dp[i][j] = dp[i − 1][j − 1] + 1

0 0 0 0 0 0 0

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

dp

n

m

Bottom-Up DP for LCS

 LCS(X, Y)
 1. dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 2. , dp[0][0 : m] = 0 dp[0 : n][0] = 0
 3. for to i = 1 n
 4. for to j = 1 m
 5. if xi == yj

 6. dp[i][j] = dp[i − 1][j − 1] + 1
 7. else

0 0 0 0 0 0 0

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

dp

n

m

Bottom-Up DP for LCS

 LCS(X, Y)
 1. dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 2. , dp[0][0 : m] = 0 dp[0 : n][0] = 0
 3. for to i = 1 n
 4. for to j = 1 m
 5. if xi == yj

 6. dp[i][j] = dp[i − 1][j − 1] + 1
 7. else
 8. Maxdp[i][j] = (dp[i − 1][j], dp[i][j − 1])

0 0 0 0 0 0 0

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

dp

n

m

Bottom-Up DP for LCS

 LCS(X, Y)
 1. dp[0 : n][0 : m] = {−1, − 1,…, − 1}
 2. , dp[0][0 : m] = 0 dp[0 : n][0] = 0
 3. for to i = 1 n
 4. for to j = 1 m
 5. if xi == yj

 6. dp[i][j] = dp[i − 1][j − 1] + 1
 7. else
 8. Maxdp[i][j] = (dp[i − 1][j], dp[i][j − 1])
 9. return dp[n][m]

0 0 0 0 0 0 0

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1

dp

n

m

Bottom-Up DP for LCS

 LCS

 1.

 2. ,

 3. for to

 4. for to

 5. if

 6.

 7. else

 8. Max

 9. return

(X, Y)
dp[0 : n][0 : m] = {−1, − 1,…, − 1}
dp[0][0 : m] = 0 dp[0 : n][0] = 0

i = 1 n
j = 1 m
xi == yj

dp[i][j] = dp[i − 1][j − 1] + 1

dp[i][j] = (dp[i − 1][j], dp[i][j − 1])
dp[n][m]

0 0 0 0 0 0 0

0

0

0

0

0

dp

n

m

Bottom-Up DP for LCS

 LCS

 1.

 2. ,

 3. for to

 4. for to

 5. if

 6.

 7. else

 8. Max

 9. return

(X, Y)
dp[0 : n][0 : m] = {−1, − 1,…, − 1}
dp[0][0 : m] = 0 dp[0 : n][0] = 0

i = 1 n
j = 1 m
xi == yj

dp[i][j] = dp[i − 1][j − 1] + 1

dp[i][j] = (dp[i − 1][j], dp[i][j − 1])
dp[n][m]

0 0 0 0 0 0 0

0

0

0

0

0

n

m

dp

Bottom-Up DP for LCS

 LCS

 1.

 2. ,

 3. for to

 4. for to

 5. if

 6.

 7. else

 8. Max

 9. return

(X, Y)
dp[0 : n][0 : m] = {−1, − 1,…, − 1}
dp[0][0 : m] = 0 dp[0 : n][0] = 0

i = 1 n
j = 1 m
xi == yj

dp[i][j] = dp[i − 1][j − 1] + 1

dp[i][j] = (dp[i − 1][j], dp[i][j − 1])
dp[n][m]

0 0 0 0 0 0 0

0

0

0

0

0

m

n

dp

Bottom-Up DP for LCS

 LCS

 1.

 2. ,

 3. for to

 4. for to

 5. if

 6.

 7. else

 8. Max

 9. return

(X, Y)
dp[0 : n][0 : m] = {−1, − 1,…, − 1}
dp[0][0 : m] = 0 dp[0 : n][0] = 0

i = 1 n
j = 1 m
xi == yj

dp[i][j] = dp[i − 1][j − 1] + 1

dp[i][j] = (dp[i − 1][j], dp[i][j − 1])
dp[n][m]

0 0 0 0 0 0 0

0

0

0

0

0

m

n

dp

Bottom-Up DP for LCS

 LCS

 1.

 2. ,

 3. for to

 4. for to

 5. if

 6.

 7. else

 8. Max

 9. return

(X, Y)
dp[0 : n][0 : m] = {−1, − 1,…, − 1}
dp[0][0 : m] = 0 dp[0 : n][0] = 0

i = 1 n
j = 1 m
xi == yj

dp[i][j] = dp[i − 1][j − 1] + 1

dp[i][j] = (dp[i − 1][j], dp[i][j − 1])
dp[n][m]

0 0 0 0 0 0 0

0

0

0

0

0

m

n

dp

Bottom-Up DP for LCS

 LCS

 1.

 2. ,

 3. for to

 4. for to

 5. if

 6.

 7. else

 8. Max

 9. return

(X, Y)
dp[0 : n][0 : m] = {−1, − 1,…, − 1}
dp[0][0 : m] = 0 dp[0 : n][0] = 0

i = 1 n
j = 1 m
xi == yj

dp[i][j] = dp[i − 1][j − 1] + 1

dp[i][j] = (dp[i − 1][j], dp[i][j − 1])
dp[n][m]

0 0 0 0 0 0 0

0

0

0

0

0

m

n

dp

Bottom-Up DP for LCS

 LCS

 1.

 2. ,

 3. for to

 4. for to

 5. if

 6.

 7. else

 8. Max

 9. return

(X, Y)
dp[0 : n][0 : m] = {−1, − 1,…, − 1}
dp[0][0 : m] = 0 dp[0 : n][0] = 0

i = 1 n
j = 1 m
xi == yj

dp[i][j] = dp[i − 1][j − 1] + 1

dp[i][j] = (dp[i − 1][j], dp[i][j − 1])
dp[n][m]

0 0 0 0 0 0 0

0

0

0

0

0

m

n

dp

Bottom-Up DP for LCS

 LCS

 1.

 2. ,

 3. for to

 4. for to

 5. if

 6.

 7. else

 8. Max

 9. return

(X, Y)
dp[0 : n][0 : m] = {−1, − 1,…, − 1}
dp[0][0 : m] = 0 dp[0 : n][0] = 0

i = 1 n
j = 1 m
xi == yj

dp[i][j] = dp[i − 1][j − 1] + 1

dp[i][j] = (dp[i − 1][j], dp[i][j − 1])
dp[n][m]

0 0 0 0 0 0 0

0

0

0

0

0

m

n

dp

Bottom-Up DP for LCS

 LCS

 1.

 2. ,

 3. for to

 4. for to

 5. if

 6.

 7. else

 8. Max

 9. return

(X, Y)
dp[0 : n][0 : m] = {−1, − 1,…, − 1}
dp[0][0 : m] = 0 dp[0 : n][0] = 0

i = 1 n
j = 1 m
xi == yj

dp[i][j] = dp[i − 1][j − 1] + 1

dp[i][j] = (dp[i − 1][j], dp[i][j − 1])
dp[n][m]

0 0 0 0 0 0 0

0

0

0

0

0

m

n

dp

Bottom-Up DP for LCS

 LCS

 1.

 2. ,

 3. for to

 4. for to

 5. if

 6.

 7. else

 8. Max

 9. return

(X, Y)
dp[0 : n][0 : m] = {−1, − 1,…, − 1}
dp[0][0 : m] = 0 dp[0 : n][0] = 0

i = 1 n
j = 1 m
xi == yj

dp[i][j] = dp[i − 1][j − 1] + 1

dp[i][j] = (dp[i − 1][j], dp[i][j − 1])
dp[n][m]

0 0 0 0 0 0 0

0

0

0

0

0

m

n

dp

Bottom-Up DP for LCS

 LCS

 1.

 2. ,

 3. for to

 4. for to

 5. if

 6.

 7. else

 8. Max

 9. return

(X, Y)
dp[0 : n][0 : m] = {−1, − 1,…, − 1}
dp[0][0 : m] = 0 dp[0 : n][0] = 0

i = 1 n
j = 1 m
xi == yj

dp[i][j] = dp[i − 1][j − 1] + 1

dp[i][j] = (dp[i − 1][j], dp[i][j − 1])
dp[n][m]

0 0 0 0 0 0 0

0

0

0

0

0

m

n

dp

Bottom-Up DP for LCS

 LCS

 1.

 2. ,

 3. for to

 4. for to

 5. if

 6.

 7. else

 8. Max

 9. return

(X, Y)
dp[0 : n][0 : m] = {−1, − 1,…, − 1}
dp[0][0 : m] = 0 dp[0 : n][0] = 0

i = 1 n
j = 1 m
xi == yj

dp[i][j] = dp[i − 1][j − 1] + 1

dp[i][j] = (dp[i − 1][j], dp[i][j − 1])
dp[n][m]

0 0 0 0 0 0 0

0

0

0

0

0

m

n

dp

Bottom-Up DP for LCS

 LCS

 1.

 2. ,

 3. for to

 4. for to

 5. if

 6.

 7. else

 8. Max

 9. return

(X, Y)
dp[0 : n][0 : m] = {−1, − 1,…, − 1}
dp[0][0 : m] = 0 dp[0 : n][0] = 0

i = 1 n
j = 1 m
xi == yj

dp[i][j] = dp[i − 1][j − 1] + 1

dp[i][j] = (dp[i − 1][j], dp[i][j − 1])
dp[n][m]

0 0 0 0 0 0 0

0

0

0

0

0

dp

n

m

(i, j)

Bottom-Up DP for LCS

 LCS

 1.

 2. ,

 3. for to

 4. for to

 5. if

 6.

 7. else

 8. Max

 9. return

(X, Y)
dp[0 : n][0 : m] = {−1, − 1,…, − 1}
dp[0][0 : m] = 0 dp[0 : n][0] = 0

i = 1 n
j = 1 m
xi == yj

dp[i][j] = dp[i − 1][j − 1] + 1

dp[i][j] = (dp[i − 1][j], dp[i][j − 1])
dp[n][m]

0 0 0 0 0 0 0

0

0

0

0

0

dp

n

m

(i, j)

(i − 1,j)

Bottom-Up DP for LCS

 LCS

 1.

 2. ,

 3. for to

 4. for to

 5. if

 6.

 7. else

 8. Max

 9. return

(X, Y)
dp[0 : n][0 : m] = {−1, − 1,…, − 1}
dp[0][0 : m] = 0 dp[0 : n][0] = 0

i = 1 n
j = 1 m
xi == yj

dp[i][j] = dp[i − 1][j − 1] + 1

dp[i][j] = (dp[i − 1][j], dp[i][j − 1])
dp[n][m]

0 0 0 0 0 0 0

0

0

0

0

0

dp

n

m

(i, j)

(i, j − 1)

(i − 1,j)

Bottom-Up DP for LCS

 LCS

 1.

 2. ,

 3. for to

 4. for to

 5. if

 6.

 7. else

 8. Max

 9. return

(X, Y)
dp[0 : n][0 : m] = {−1, − 1,…, − 1}
dp[0][0 : m] = 0 dp[0 : n][0] = 0

i = 1 n
j = 1 m
xi == yj

dp[i][j] = dp[i − 1][j − 1] + 1

dp[i][j] = (dp[i − 1][j], dp[i][j − 1])
dp[n][m]

0 0 0 0 0 0 0

0

0

0

0

0

dp

n

m

(i, j)

(i, j − 1)(i − 1,j − 1)

(i − 1,j)

Bottom-Up DP for LCS

 LCS

 1.

 2. , .

 3. for to

 4. for to

 5. if

 6.

 7. else

 8. Max

 9. return

(X, Y)
dp[0 : n][0 : m] = {−1, − 1,…, − 1}
dp[0][0 : m] = 0 dp[0 : n][0] = 0

i = 1 n
j = 1 m
xi == yj

dp[i][j] = dp[i − 1][j − 1] + 1

dp[i][j] = (dp[i − 1][j], dp[i][j − 1])
dp[n][m]

Time Complexity: Θ(nm)

Bottom-Up vs Top-Down DP

Bottom-Up vs Top-Down DP

Let “aaa a” and “aaa a” be two sequences of many as.X = … Y = … n

Bottom-Up vs Top-Down DP

Let “aaa a” and “aaa a” be two sequences of many as.X = … Y = … n

How will top-down LCS run on and ?X Y

Bottom-Up vs Top-Down DP

Let “aaa a” and “aaa a” be two sequences of many as.X = … Y = … n

How will top-down LCS run on and ?X Y

LCS(n, n)

Bottom-Up vs Top-Down DP

Let “aaa a” and “aaa a” be two sequences of many as.X = … Y = … n

How will top-down LCS run on and ?X Y

LCS(n, n) LCS(n − 1,n − 1)

Bottom-Up vs Top-Down DP

Let “aaa a” and “aaa a” be two sequences of many as.X = … Y = … n

How will top-down LCS run on and ?X Y

LCS(n, n) LCS(n − 1,n − 1) LCS(n − 2,n − 2)

Bottom-Up vs Top-Down DP

Let “aaa a” and “aaa a” be two sequences of many as.X = … Y = … n

How will top-down LCS run on and ?X Y

LCS(n, n) LCS(n − 1,n − 1) LCS(n − 2,n − 2) LCS(0,0)…

Bottom-Up vs Top-Down DP

Let “aaa a” and “aaa a” be two sequences of many as.X = … Y = … n

How will top-down LCS run on and ?X Y

LCS(n, n) LCS(n − 1,n − 1) LCS(n − 2,n − 2) LCS(0,0)…

Bottom-Up vs Top-Down DP

Let “aaa a” and “aaa a” be two sequences of many as.X = … Y = … n

How will top-down LCS run on and ?X Y

LCS(n, n) LCS(n − 1,n − 1) LCS(n − 2,n − 2) LCS(0,0)…

Top-down LCS requires many recursive calls.n

Bottom-Up vs Top-Down DP

Let “aaa a” and “aaa a” be two sequences of many as.X = … Y = … n

How will top-down LCS run on and ?X Y

LCS(n, n) LCS(n − 1,n − 1) LCS(n − 2,n − 2) LCS(0,0)…

Top-down LCS requires many recursive calls.n Hence, runtime would be .Θ(n)

Bottom-Up vs Top-Down DP

Let “aaa a” and “aaa a” be two sequences of many as.X = … Y = … n

How will bottom-up LCS run on and ?X Y

Bottom-Up vs Top-Down DP

Let “aaa a” and “aaa a” be two sequences of many as.X = … Y = … n

How will bottom-up LCS run on and ?X Y

0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0

dp

n

n

Bottom-Up vs Top-Down DP

Let “aaa a” and “aaa a” be two sequences of many as.X = … Y = … n

How will bottom-up LCS run on and ?X Y

0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0

dp

n

n

Bottom-Up vs Top-Down DP

Let “aaa a” and “aaa a” be two sequences of many as.X = … Y = … n

How will bottom-up LCS run on and ?X Y

0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0

dp

n

n

Bottom-Up vs Top-Down DP

Let “aaa a” and “aaa a” be two sequences of many as.X = … Y = … n

How will bottom-up LCS run on and ?X Y

0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0

dp

n

n

Bottom-Up vs Top-Down DP

Let “aaa a” and “aaa a” be two sequences of many as.X = … Y = … n

How will bottom-up LCS run on and ?X Y

0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0

dp

n

n

Bottom-Up vs Top-Down DP

Let “aaa a” and “aaa a” be two sequences of many as.X = … Y = … n

How will bottom-up LCS run on and ?X Y

0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0

dp

n

n

Bottom-Up vs Top-Down DP

Let “aaa a” and “aaa a” be two sequences of many as.X = … Y = … n

How will bottom-up LCS run on and ?X Y

0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0

dp

n

n

Bottom-Up vs Top-Down DP

Let “aaa a” and “aaa a” be two sequences of many as.X = … Y = … n

How will bottom-up LCS run on and ?X Y

0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0

dp

n

n

Bottom-Up vs Top-Down DP

Let “aaa a” and “aaa a” be two sequences of many as.X = … Y = … n

How will bottom-up LCS run on and ?X Y

0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0

dp

n

n

Bottom-Up vs Top-Down DP

Let “aaa a” and “aaa a” be two sequences of many as.X = … Y = … n

How will bottom-up LCS run on and ?X Y

0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0

dp

n

n

Bottom-up LCS will still fill all

entries of array in time.

n * n
dp Θ(n2)

Bottom-Up vs Top-Down DP

Bottom-Up vs Top-Down DP

• Top-down solves only those subproblems which are necessary.

Bottom-Up vs Top-Down DP

• Top-down solves only those subproblems which are necessary.

• Bottom-up solves all the subproblems.

Bottom-Up vs Top-Down DP

• If all subproblems need to be solved, then bottom-up is better due to no recursion overhead.

• Top-down solves only those subproblems which are necessary.

• Bottom-up solves all the subproblems.

Bottom-Up vs Top-Down DP

• If all subproblems need to be solved, then bottom-up is better due to no recursion overhead.

• Otherwise, top-down might be better.

• Top-down solves only those subproblems which are necessary.

• Bottom-up solves all the subproblems.

